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H I G H L I G H T S

• Networks are often thought to be beneficial because of network externalities.

• This paper is about the opposite case, which we call “bad networks”.

• If people feel compelled to participate in the network it causes a rat race that harms participants.

• Social networks are a leading example.

• The paper analyzes how bad networks arise and identifies features of networks that make them both harmful and easy to establish.
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A B S T R A C T

There is increasing evidence that social media is detrimental to mental health and self-esteem. A puzzle is why, 

in spite of this, people join these platforms. One possibility is that people feel compelled to participate: they 

dislike these networks—in particular, the way in which they generate rat races—but they need to be on them to 

socialize with peers. We refer to networks that harm users as “bad networks.” We model settings with network 

externalities and show that, surprisingly, bad networks are easy to establish. We also show that networks tend 

to be both bad and easy to establish when they create rat races—as social networks often do. Amplifying the rat 

race boosts network size which, while harmful to consumers, may benefit the platform.

1 . Introduction

The harmful effects of social media are becoming increasingly hard 

to ignore. In his recent book, The Anxious Generation, Jonathan Haidt 

argues that social media usage is fueling a mental health crisis among 

young people. Since 2010, rates of major depression among teens have 

risen by more than 150 percent, and the share of 8th, 10th, and 12th 

graders who report being satisfied with themselves has dropped by 

roughly 10 percentage points.1 This decline in mental health began pre­

cisely when smartphones became widely adopted. Haidt illustrates the 

crisis through the story of Alexis, who joined Instagram at age 11. At 

first, she was thrilled, writing in her journal: “On Instagram I reached 

127 followers. Ya! Let’s put it this way, if I was happy and excited 

for 10 followers then this is just AMAZING!!!!” But her enthusiasm 

quickly faded. Her feed soon filled with images of models, dieting 

advice, and eventually pro-anorexia content promoted by the platform’s 

algorithms. By eighth grade, she was hospitalized for anorexia and 

depression—struggles that continued throughout her teenage years.

While much of Haidt’s evidence is correlational, there is growing 

causal evidence linking social media to mental health declines. For 

example, Braghieri, Levy and Makarin (2022) exploit the staggered roll­

out of Facebook across U.S. college campuses to show that access to the 

platform increased symptoms of poor mental health, particularly depres­

sion. Further evidence on mechanisms suggests these effects stem from 

Facebook’s tendency to foster negative self-comparisons among users.

If social media has such deleterious effects, it raises the question: 

why are people using these platforms? One answer is that social me­

dia may be addictive. Addiction researcher Anna Lembke embraces this 

view, writing in Dopamine Nation, “the smartphone is the modern day 
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hypodermic needle, delivering digital dopamine 24/7 for a wired gener­

ation.”2 Supporting this perspective, Allcott, Gentzkow and Song (2022) 

provide causal evidence from a field experiment suggesting that addic­

tion accounts for roughly 31% of social media use. They find that usage 

drops significantly when users can set limits on their future screen time.

However, another important aspect may be that people feel com­

pelled to join: they dislike these platforms but need to be on them to 

socialize with their peers. According to this story, people are misco­

ordinated: they would be better off if they could socialize in another 

way, but no individual has the power to make that change. Parents 

seem to perceive this dilemma. As Jonathan Haidt puts it, “Most par­

ents don’t want their children to have a phone-based childhood, but 

somehow the world has reconfigured itself so that any parent who re­

sists is condemning their children to social isolation.” A recent survey 

of college students by Bursztyn, Handel, Jimenez and Roth (2023) pro­

vides more concrete evidence. They find that the average student would 

need to be paid 59 dollars to get off TikTok for four weeks. By contrast, 

the average student would pay 28 dollars to have TikTok deactivated for

everyone.

We refer to networks that harm users as “bad networks.” This pa­

per has two aims. First, we analyze why bad networks arise. One might 

imagine that such networks are hard to establish—even when they are 

technically feasible. Why would people flock to a network that they in­

tensely dislike—absent some form of irrationality? We show, perhaps 

contrary to intuition, that bad networks can get started easily—like par­

ties that people do not wish to attend but feel obligated to go to when 

others are going. The second aim of this paper is to identify the features 

that make networks both bad and easy to establish. We show that this oc­

curs when networks generate rat races—as many social networks do. For 

instance, users may continually escalate posting, self-promotion, and cu­

ration of their online personas to compete for likes, followers, and other 

public signals of status, even when this arms race does not improve—and 

may even reduce—their own well-being.

This paper is organized as follows. Section 2 provides an illustrative 

example that demonstrates the idea of a bad network, where a large 

number of agents join a network even though it is welfare-reducing.

Section 3 generalizes this example. It considers a setting where agents 

face network externalities whether they join a network (parameterized 

by 𝑎) or stay off (parameterized by 𝑏). We allow 𝑎 and 𝑏 to take arbi­

trary values. The interesting case arises when 0 > 𝑎 > 𝑏: the network is 

unpleasant for those who are on it, but even more unpleasant for those 

who are off it. “Instigators” get these networks established. These in­

stigators then put pressure on other agents to join, creating a snowball 

effect. Because agents do not internalize the externalities they inflict—in 

particular, the pressure they put on other agents to join—these networks 

grow to suboptimally large sizes (𝑞𝑁𝐸 > 𝑞∗).
In Section 4 we consider potential remedies, such as Pigouvian taxes. 

While “marginal” policies may be sufficient to induce the socially opti­

mal outcome, more extreme policies are potentially needed to dislodge 

established networks.

Section 5 then asks whether there are networks with the property 

that 0 > 𝑎 > 𝑏. We demonstrate that networks tend to have this feature 

when they generate rat races. We provide explicit microfoundations for 

a social network with this property. In the case we consider, agents make 

two choices: whether to join a social network and whether to exert ef­

fort in a rat race. Agents on the network care more about the rat race 

(i.e., how they compare to others) than agents off the network, which we 

parameterize by 𝛼. We think of 𝛼 as the extent to which the social net­

work creates concern among agents about social comparison. Networks 

where 𝛼 is large tend to have the property that 0 > 𝑎 > 𝑏. In addition, 

we show that the size of the network increases with 𝛼. Thus, amplify­

ing the rat race may be beneficial to a platform even if it is harmful to

consumers.

2 See Lembke (2021), p.1.

Relative to the existing literature, our contribution is twofold. First, 

while it is known that agents can miscoordinate on a bad network (see es­

pecially Bursztyn, Handel, Jimenez and Roth (2023), who build a model 

with this property), existing work has not examined the ease or difficulty 

with which such networks get established. This paper shows why—

perhaps surprisingly—it is easy to establish such networks.3 Second, 

while networks with the feature 0 > 𝑎 > 𝑏 might seem counterintu­

itive, we show that they arise naturally in many settings. Rat races make 

networks bad and also create pressure to join.4

2 . An illustrative example

Let us begin with an illustrative example. Consider a setting with 

a unit mass of agents who simultaneously decide whether to join a 

network. The utility of agent 𝑖 ∈ [0, 1] is given by:

𝑢(𝑥𝑖) =

{

𝑎𝑞, 𝑥𝑖 = 1,
𝑏𝑞, 𝑥𝑖 = 0,

where 𝑥𝑖 = 1 (𝑥𝑖 = 0) denotes the decision to join (stay off) the network, 

and 𝑞 ∈ [0, 1] is the fraction of agents who join. Network participation 

generates externalities for participants (captured by parameter 𝑎) and 

non-participants (captured by parameter 𝑏). We assume 𝑎 > 𝑏, so that 

participants benefit more from the network than non-participants. Note 

that Bursztyn, Handel, Jimenez and Roth (2023) also allows for such 

negative externalities.

We will examine both the case where 𝑎 > 0 and the case where 𝑎 < 0. 

The case where 𝑎 < 0 might not seem intuitive. Why would participation 

in a network generate negative externalities? However, we see such net­

works are common. In Section 5, we provide microfoundations for such 

networks and convey an intuition for why they can arise. We argue that, 

in cases where networks generate rat races—as tends to be true of social 

networks—negative externalities are endemic.

To begin our analysis, notice that agents strictly prefer to join the 

network when 𝑞 > 0 and they are indifferent between joining and staying 

off when 𝑞 = 0. Thus, the game has two Nash equilibria: full participation 

(𝑞𝑁𝐸 = 1) and no participation (𝑞𝑁𝐸 = 0).

The agents’ aggregate welfare is given by

𝑊 (𝑞) = (𝑎𝑞)𝑞
⏟⏟⏟

benefit to those on the network

+ (𝑏𝑞)(1 − 𝑞)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

benefit to those off the network

.

We refer to the network as a “good network” if 𝑎 > 0. It is easy to show 

that, in this case, the welfare-maximizing value of 𝑞, denoted 𝑞∗, is equal 

to 1. We refer to the network as a “bad network” if 𝑎 < 0. In this case, 

3 The work of Bursztyn, Handel, Jimenez and Roth (2023) is perhaps the 

closest paper to ours. They study an environment with negative spillovers to 

non-users of a network which can lead to what they call “product market traps.” 

In their model, the decentralized (rational expectations) equilibrium need not 

be unique nor socially optimal. They point out that the introspective equilibrium

solution concept of Akerlof, Holden and Rayo (2023) permits them to select 

the bad equilibrium provided there is a large enough fraction of early adopters 

who want to use the product even when nobody else is using it. In an earlier 

draft of their paper, they also note the possibility that a unique bad equilib­

rium might exist. We see the main contribution of our paper as making clear 

why “bad networks” can get established easily. Relative to Bursztyn, Handel, 

Jimenez and Roth (2023), we formalize the conditions under which a unique 

bad equilibrium arises, and microfound the reason why network externalities 

exist. Bursztyn, Handel, Jimenez and Roth (2023) are less focused on the ques­

tion of why it is easy for bad networks to get established and the primitives that 

make the network “bad”.
4 The rat race in Section 5 of our paper relates to Tirole (2021) who analyzes a 

model in which agents care about their image and choose whether to engage in 

activity in the public or private sphere. He finds that social networks move activ­

ity, at a cost, from the private sphere into the public sphere, which is consistent 

with our microfoundation.
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𝑞∗ = 0. Intuitively, when participation generates positive spillovers (𝑎 >
0), aggregate welfare rises as more agents join the network—whereas 

negative spillovers (𝑎 < 0) make participation socially harmful.

There are many prominent examples of networks that impose rel­

atively small costs on those off the network and have considerable 

benefits for those on it. These might include services like Google Search, 

Spotify recommendations, or Tesla Autopark, where each additional user 

improves the underlying algorithm for everyone. Such networks are ones 

that we would see as “good.” Social media, on the other hand, is a poten­

tial example of a bad network. These platforms can generate a “rat race” 

of social comparison that is welfare-reducing for participants (𝑎 < 0), 

while the experience for non-participants is made even worse by social 

exclusion (𝑏 < 𝑎). As we will discuss further in Section 5, this creates the 

very conditions for a bad network to thrive.

Putting the above findings together, we conclude that the following 

types of outcomes are possible.

Good outcomes:

1. Full participation in a good network (𝑞𝑁𝐸 = 𝑞∗ = 1) can occur 

when 𝑎 > 0.

2. No participation on a bad network (𝑞𝑁𝐸 = 𝑞∗ = 0) can occur when 

𝑎 < 0.

Bad outcomes:

1. No participation in a good network (𝑞𝑁𝐸 = 0 and 𝑞∗ = 1) can occur 

when 𝑎 > 0.

2. Full participation in a bad network (𝑞𝑁𝐸 = 1 and 𝑞∗ = 0) can occur 

when 𝑎 < 0.

The first type of bad outcome—no participation in a good network—

is a well-understood coordination failure, in which agents fail to realize 

mutual gains from participation.

In contrast, the second type of bad outcome—full participation on a 

bad network—has received relatively little attention. This second fail­

ure can occur when 𝑎 < 0; however, in that case, a good outcome—no 

participation on a bad network—also remains possible. This raises a key 

question: when 𝑎 < 0, which outcome is more likely to prevail—the good 

or the bad?

In the next section, we generalize our analysis to better understand 

the circumstances where bad outcomes prevail. One might think that 

bad networks would be difficult to establish, even if they are technically 

possible. Why would people join a network they strongly dislike? Yet, 

perhaps counterintuitively, such networks can form quite easily—much 

like parties that no one wants to attend but feel compelled to join once 

others start going.

3 . Participation in good and bad networks

To generalize the example, assume that the utility of agent 𝑖 ∈ [0, 1]
is given by:

𝑢𝑖(𝑥𝑖) =

{

𝑎𝜑(𝑞) + 𝜖𝑖, 𝑥𝑖 = 1,
𝑏 𝜑(𝑞), 𝑥𝑖 = 0,

(1)

where 𝜑(0) = 0, 𝜑(1) = 1, and 𝜑(𝑞) is strictly increasing, twice differ­

entiable, and weakly concave.5 The 𝜖𝑖’s are distributed according to a 

unimodal p.d.f. 𝑓 (⋅) with support [−𝑐, 𝑐], where 𝑐 ∈ R ∪ {±∞}. For ease 

5 Taking 𝜑(1) = 1 is without loss of generality since we can always rescale 

𝑎 and 𝑏. It is natural to assume that social networks have concave network 

externalities. While early adopters may bring substantial value to the net­

work, network congestion, competition for attention, and over-saturation tend 

to reduce the marginal value of participation as network size increases.

of exposition, we assume that 𝑓  is symmetric about 0 and atomless.6 We 

again assume that 𝑎 > 𝑏.7 Notice that the example from Section 2 cor­

responds to the case where 𝑐 = 0 and 𝜑(𝑞) = 𝑞. In Section 5 we provide 

an explicit microfoundation for preferences of the form given in Eq. (1) 

(see Proposition 4).

To solve for the Nash equilibria of the game, notice that agent 𝑖
prefers to join the network if and only if 𝜖𝑖 > (𝑏 − 𝑎)𝜑(𝑞). Thus, in 

equilibrium, the mass of agents who join the network must be equal 

to P(𝜖𝑖 ≥ (𝑏 − 𝑎)𝜑(𝑞)) = 1 − 𝐹 ((𝑏 − 𝑎)𝜑(𝑞)), where 𝐹  is the c.d.f. of 𝑓 . 

Hence, the Nash equilibrium must solve the following equation: 

𝑞𝑁𝐸 = 1 − 𝐹 ((𝑏 − 𝑎)𝜑(𝑞𝑁𝐸 )) (2)

When 𝑐 = 0, there are multiple Nash equilibria. However, when 𝑐 > 0
(in the spirit of a trembling-hand refinement), there is a unique Nash 

equilibrium with 𝑞𝑁𝐸 > 1
2 .8 We state this formally in the following 

lemma.

Lemma 1. For all 𝑐 > 0 there is a unique equilibrium. In this equilibrium, 

𝑞𝑁𝐸 > 1
2 .

To understand the intuition behind this result, let us refer to agents 

with 𝜖𝑖 > 0 as “instigators,” agents with 𝜖𝑖 < 0 as “resistors,” and agents 

with 𝜖𝑖 = 0 as “neutral agents.”9 We can interpret these groups through 

the lens of the microfoundation we develop in Section 5. If agents have 

heterogeneous preferences over social comparison, “instigators” (𝜖𝑖 > 0) 

correspond to agents who derive high intrinsic utility from visibility and 

status seeking—for example, influencers who benefit from the “rat race” 

of esteem even before the network is large. Conversely, “resistors” (𝜖𝑖 <
0) might be individuals who are averse to social comparison or privacy 

risks. Resistors only join the network once the mass of peers (𝑞) becomes 

sufficiently large that the benefit of social connection outweighs their 

intrinsic distaste for the platform. When 𝑐 = 0, all agents are neutral; 

but when 𝑐 > 0, there is a combination of instigators and resistors (plus 

a zero-mass of neutral agents).

Notice that if no agents are on the network initially (𝑞0 = 0), all 

of the instigators will join. These instigators make up half of the pop­

ulation; thus, 𝑞 rises to 𝑞1 = 1
2 . When 𝑞 increases to 𝑞1, some resistors 

will also join, causing 𝑞 to rise further: to 𝑞2 > 𝑞1. When 𝑞 increases 

to 𝑞2, yet more agents will join. The unique Nash equilibrium corre­

sponds to the limit of this process: 𝑞𝑁𝐸 = lim𝑛→∞ 𝑞𝑛 (see Fig. 1 for an

illustration).10

Agents’ idiosyncratic benefits/costs (𝜖𝑖) have an impact on the wel­

fare analysis. Letting 𝜖(𝑞) = 𝐹−1(1 − 𝑞), aggregate welfare is given by11:

𝑊 (𝑞) = (𝑎 − 𝑏)𝑞𝜑(𝑞) + 𝑏𝜑(𝑞) + E
(

𝜖𝑖 ∶ 𝜖𝑖 > 𝜖(𝑞)
)

. (3)

Let 𝑞∗ denote the value of 𝑞 that maximizes aggregate welfare. As in the 

illustrative example, when 𝑐 = 0, so that 𝜖𝑖 = 0 for all 𝑖, 𝑞∗ = 0 if 𝑎 < 0
and 𝑞∗ = 1 if 𝑎 > 0. However, 𝑞∗ might take a value between 0 and 1 if 

𝑐 > 0. For instance, suppose there is one set of agents with 𝜖𝑖 large and 

positive and a second set with 𝜖𝑖 large and negative. It might be optimal 

6 Atomic distributions over 𝜖𝑖 are easily accommodated and yield even sharper 

results.
7 The case where 𝑎 < 𝑏— although not of much economic interest—is easily 

handled and leads to similar types of inefficiency.
8 We thank an anonymous referee for pointing out the similarity between our 

approach and trembling-hand equilibrium.
9 The term instigator is used by Granovetter (1978) to describe agents who 

have a “0% threshold” for taking an action—that is, agents who are willing to 

join a network in the absence of anyone else joining.
10 Note that if consumers not only have heterogeneous preferences over joining 

the network (𝜖𝑖) but also the network externalities (𝑎 and 𝑏) are heterogeneous 

across consumers, there might be multiple equilibria.
11 The notation E

(

𝜖𝑖 ∶ 𝜖𝑖 > 𝜖
)

 is equivalent to E
(

𝜖𝑖𝟙{𝜖𝑖>𝜖(𝑞)}
)

 where 𝟙 is an 

indicator function.
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Fig. 1. Starting from 𝑞 = 0, all instigators join the network, taking us to 𝑞1 =
1
2
. 

Because 𝑎 > 𝑏, this induces some resistors to join the network, taking us to 𝑞2, 
and so on until we reach the unique solution 𝑞𝑁𝐸  of Eq. (2).

to have the first set join the network and the second set stay off the

network.

As before, we will use the terms “good network” and “bad network” 

to refer, respectively, to networks that exhibit positive externalities (𝑎 >
0) and negative externalities (𝑎 < 0). The following proposition compares 

the equilibrium level of network participation to the socially optimal 

level for good and bad networks.

Proposition 1.

1. For good networks (𝑎 > 0), too few agents join the network relative to 

the social optimum (𝑞𝑁𝐸 < 𝑞∗).
2. For bad networks (𝑎 < 0), too many agents join relative to the social 

optimum (𝑞∗ < 𝑞𝑁𝐸).

Intuitively, instigators get a bad network started. Other agents then 

join the bad network—even though they dislike it—because it is even 

worse to be off the network (𝑏 < 𝑎). It is like a party that people find un­

pleasant but feel obliged to attend. As people join the network, they both 

make the network more unpleasant and increase the pressure to join. 

That is, they make it a party where attendance is more obligatory. This 

externality leads to suboptimally high rates of network participation. 

This effect also generates the following result.

Lemma 2. For bad networks (𝑎 < 0), there is a positive mass of agents on 

the network who would be better off if the network did not exist.

Proposition 1 shows that, for all bad networks, too many agents join 

relative to the social optimum. An extreme case—that can arise—is one 

where all agents join the network even though it is optimal to have no

agents join. The following proposition provides conditions under which 

we observe this outcome.

Proposition 2.

1. If 𝑐 ≤ 𝑎 − 𝑏, all agents join the network in equilibrium (𝑞𝑁𝐸 = 1).

2. If 𝑐 < −𝑎, all agents are better off if there is no network (𝑞 = 0) than 

if there is a network (𝑞 > 0). This implies, moreover, that 𝑞∗ = 0.

Intuitively, for a bad network where 𝑐 is small, resistors are not too 

resistant to joining the network. Thus, when instigators join the net­

work, they create a snowball effect whereby all of the resistors join as 

well (hence, 𝑞𝑁𝐸 = 1). Moreover, for a bad network where 𝑐 is small, 

agents’ idiosyncratic tastes (𝜖𝑖’s) are not very important from a welfare 

standpoint. The negative network externalities associated with having 

agents join are the dominant welfare consideration. Thus, 𝑞∗ = 0. 

Discussion

Propositions 1 and 2 explain why networks that are both socially unde­

sirable and harmful to users can nonetheless sustain large amounts of 

participation in equilibrium. Such “bad networks” are remarkably easy 

to get going: even if instigators are not very inclined to join (i.e., even 

if c is very low) they can trigger a cascade in which the pressure to join 

overwhelms any idiosyncratic dislike for the network. In the extreme, 

all agents may join the network and yet prefer that it did not exist.

Our findings are supported by empirical evidence. Bursztyn, Handel, 

Jimenez and Roth (2023) report that the average student prefers to 

be on TikTok. They would need to be paid 59 dollars to get off of it 

for four weeks. However, they would be willing to pay 28 dollars to 

have TikTok deactivated for everyone. In this sense, these students are 

miscoordinated— trapped on a bad network (in line with Lemma 2).

Internal company research at Meta points to the same conclusion. As 

reported in the Wells, Horwitz and Seetharaman (2021) coverage of the 

“Facebook Papers,” Meta’s own analyses acknowledged that Instagram 

worsens body image issues for one in three teenage girls and that users 

themselves blamed the platform for increases in anxiety and depres­

sion. In our framework, this is a real-world instance of a bad network: 

widespread participation persists despite evidence of harm to many 

users. In Section 5, we demonstrate that social media platforms have 

incentives to exacerbate the harmful effects of their networks.

4 . Policy

Of course, there are tools for correcting market failures.12 It is nat­

ural to consider Pigouvian taxation as a potential remedy since the 

inefficiencies in the market arise due to externalities.13 Here, we show 

that Pigouvian taxation may restore efficiency; however there are cases 

where it does not work.

Let 𝜏 denote the tax each agent pays when they join the network. 

Agent 𝑖’s utility becomes:

𝑢𝑖 =

{

𝑎𝜑(𝑞) + 𝜖𝑖 − 𝜏, 𝑥𝑖 = 1,
𝑏 𝜑(𝑞), 𝑥𝑖 = 0,

Aggregate welfare is given by:

𝑊 tax(𝑞, 𝜏) = ∫

1

𝑖=0
𝑢𝑖𝑑𝑖

⏟⏞⏟⏞⏟
agents’ utility

+ 𝑞 ⋅ 𝜏
⏟⏟⏟

tax revenue

.

A Pigouvian tax charges each agent based on the marginal externality 

they inflict:

𝜏𝑃 (𝑞) = −(𝑎𝑞 + 𝑏(1 − 𝑞))𝜑′(𝑞)

Suppose that, before agents choose whether to join the network, a social 

planner announces that the tax on the network will be 𝜏𝑃 (𝑞∗), where 𝑞∗

is the socially optimal level of network participation.14 Does this tax 

maximize aggregate welfare?15

Proposition 3 provides conditions under which the Pigouvian tax 

induces the welfare-maximizing outcome 𝑞∗.

Proposition 3. Consider a bad network (0 > 𝑎 > 𝑏) where 𝜑(𝑞) = 𝑞 and a 

Pigouvian tax 𝜏𝑃 (𝑞∗) is imposed. There is a unique equilibrium outcome and 

it is welfare-maximizing (𝑞 = 𝑞∗).

12 There are also tools for addressing market failures arising from behavioral 

biases (e.g., see Bernheim and Taubinsky (2018)). Although we focus on purely 

rational agents, it would be an interesting question for future research to investi­

gate the implications of an extension of our model that accounts for well-known 

behavioral biases or irrationalities.
13 In this section we focus on bad networks, but the optimal policy for good 

networks mirrors Proposition 3 but with subsidies rather than taxes.
14 If 𝑞∗ = 0 it is without loss of generality to set 𝜏(𝑞∗) = +∞, which one can 

think of as “banning the network.”
15 We thank the editor for highlighting the implications of our model for 

optimal taxation.
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More generally, imposing a Pigouvian tax guarantees the existence of 

an equilibrium that is welfare maximizing (𝑞 = 𝑞∗); but this equilibrium 

may not be unique. Thus, when 𝜑(𝑞) ≠ 𝑞, it is not guaranteed that a 

Pigouvian tax will restore efficiency. The following example illustrates.

4.1 . An example: where pigouvian taxes fail

Let us consider an example of a case where the Pigouvian tax does not 

restore efficiency. For simplicity, we focus on an example where the 

population consists of just two types: a mass of 0.2 instigators (𝐼) and 

0.8 resistors (𝑅). Take utility to be

𝑢𝑖(𝑥𝑖) =

{

−2𝑞2 + 𝜖𝑖, 𝑥𝑖 = 1
−7𝑞2, 𝑥𝑖 = 0,

where instigators receive idiosyncratic utility 𝜖𝐼 = 3 from joining the 

network, and resistors receive disutility 𝜖𝑅 = −2.5. Thus, in this example, 

𝜑(𝑞) = 𝑞2, 𝑎 = −2, and, 𝑏 = −7.16

Since 𝜖𝐼 > 0 and 𝑎 > 𝑏, instigators strictly prefer to join the network 

at all levels of 𝑞. On the other hand, resistors prefer to join the network 

when

−2𝑞2 − 2.5 > −7𝑞2 ⟺ 𝑞 >
√

0.5 ≈ 0.7.

It follows that when only instigators are on the network, resistors prefer 

not to join. However, if enough resistors join the network, resistors all

prefer to join. Hence there are exactly two Nash equilibria:

𝑞𝑁𝐸
𝐿 = 0.2, and 𝑞𝑁𝐸

𝐻 = 1.

From the Planner’s perspective, welfare is given by

𝑊 (𝑞) =

{

−(7 − 5𝑞)𝑞2 + 3𝑞, 𝑞 ≤ 0.2
−(7 − 5𝑞)𝑞2 + 1.1 − 2.5𝑞, 𝑞 > 0.2.

It is easily shown that welfare is increasing on [0, 0.2) and decreasing on 

(0.2, 1]. It follows that the welfare-maximizing quantity is for only the 

instigators to join the network: 𝑞∗ = 0.2.

Now, suppose that agents have coordinated on the largest equilib­

rium 𝑞𝑁𝐸
𝐻 = 1. What is the effect of the Pigouvian tax 𝜏𝑃 (𝑞∗) at this 

quantity? Since 𝜑′(𝑞) = 2𝑞, we have

𝜏𝑃 (0.2) = −(𝑎 ⋅ 0.2 + 𝑏(1 − 0.2))𝜑′(0.2) = 2.4.

We now show that this tax is not enough to get resistors to leave the 

network. To see this, note that once the tax is imposed, resistors’ utility 

from joining the network becomes −2𝑞2 − 2.5 − 𝜏𝑃 (0.2) = −2𝑞2 − 4.9. 

Hence resistors prefer to join whenever

−2𝑞2 − 4.9 > −7𝑞2 ⟺ 𝑞 >
√

0.98 ≈ 0.99.

In other words, when 𝑞 = 1, resistors prefer to stay on the network, even 

when subject to the Pigouvian tax. The tax required to deter resistors from 

joining when 𝑞 = 1 is in fact any 𝜏 > 2.5.

Intuitively, the Pigouvian tax is calibrated to the marginal external­

ity that a single agent imposes on others at a given network size. But 

the bad equilibrium at (𝑞 = 1) is sustained by strong strategic com­

plementarities: when almost everyone is on the network, each resistor 

compares “being on the bad network with everyone else” to “being off 

the bad network while everyone else stays,” and the latter looks even 

worse. A small tax that makes each individual internalize her marginal 

impact is not enough to overturn that comparison, because any one 

resistor who deviates has essentially no effect on the aggregate (𝑞).

16 Although we take 𝜑(𝑞) to be concave in Section 3, for illustrative purposes 

we use a convex 𝜑 here.

To move the economy from the high‑participation equilibrium (𝑞𝑁𝐸
𝐻 = 1) 

toward the lower‑participation outcome, many resistors would need to 

leave at once—but none of them internalizes the benefit their collective 

exit would create.

This limitation of marginal taxation aligns with equilibrium-selection 

results in the broader coordination literature. Akerlof, Holden and Rayo 

(2023) show that when demand is 𝑆-shaped, an economy can get stuck 

in a high-adoption state (like our bad network) unless a discrete “im­

pulse” pushes demand past a tipping threshold. Similarly, Halaburda 

and Yehezkel (2019) demonstrate that when a platform enjoys a “focal­

ity advantage,” a standard price adjustment may be insufficient to shift 

coordination; instead, a sufficiently large price gap is required to over­

come the focal equilibrium. In our setting, the Pigouvian tax corrects the 

price at the margin, but fails to create the discrete utility wedge needed 

to tip resistors away from the bad equilibrium.

As a consequence, a moderate, “marginal” tax can restore efficiency 

locally (it would prevent further expansion of the network if we started 

near the efficient outcome), but once the economy is stuck in the large 

bad equilibrium it may not be strong enough to dislodge it. Achieving 

the socially preferred outcome may require a more extreme policy—a 

tax high enough to destroy the bad equilibrium altogether, or an out­

right ban on the network—rather than merely correcting the marginal 

externality at the existing network size.17

Finally, this logic connects to recent policy debates regarding bans 

versus taxation. In the context of digital advertising, Acemoglu and 

Johnson (2024) argue that the industry is “locked into a bad equilib­

rium” in which platforms are incentivised to garner engagement through 

whatever means necessary in order to generate ad revenue. To remedy 

this, they propose a significant tax on ad revenue to force a shift to 

other business models (e.g., subscription). This aligns with our finding 

that dislodging a bad network may require a large intervention rather 

than a marginal price correction.

When taxation is difficult to implement, our model suggests that 

quantity regulations can serve a similar function. Consider, for example, 

Australia’s recent legislation to ban social media for users under 16—a 

demographic for which levying taxes would be politically challenging. 

If we consider social media adoption as a game among peers, status-

seeking early adopters act as “instigators.” They generate a critical mass 

that drags the broader population of resistors into the network through 

fear of social exclusion. By preventing these instigators from joining 

the network, the policy removes the impulse required to tip the local 

peer network into an inefficient, high-participation equilibrium. Thus, 

targeted bans can be viewed as a mechanism to resolve coordination 

failures.

5 . When are social networks bad?

In Section 3, we showed that networks get going easily when net­

works are bad (0 > 𝑎 > 𝑏)—perhaps contrary to intuition. A remaining 

question is whether there are networks, such as social networks, that are 

prone to being bad.

Here, we discuss a force that we see as important in making networks 

bad: rat races. Many networks generate competition between agents. 

Social networks, for instance, tend to generate competition by making 

users more aware of how they compare to one another. Agents may join 

the network because they feel the need to participate in the competition; 

however they may prefer to have no network, so the competition can be 

avoided. Here, we provide microfoundations for this idea, focusing on 

17 This suggests that optimal policy in these settings may need to be dynamic. 

Consistent with the “impulse” logic in Akerlof, Holden and Rayo (2023) or the 

dynamic pricing analysis in Halaburda and Yehezkel (2019), a planner might 

first need to impose a temporary, extreme tax (greater than 𝜏𝑃 ) to “kill” a bad 

focal equilibrium. Once the economy has tipped into the efficient basin of at­

traction, the tax can be adjusted to the standard Pigouvian level to maintain 

optimality.
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the case of social networks. We also show why it may be in the interest of 

platforms to promote competition—despite its negative consequences.

5.1 . Model

Suppose there is a unit mass of agents and each decides whether to 

join a social network (𝑥𝑖 = 0 or 1) and whether to exert effort (𝑒𝑖 = 0
or 1). The effort the agent exerts is part of a zero-sum competition for 

esteem. We denote the agent’s outcome in the esteem competition by 

𝑅𝑖 ∈ [−1, 1] and refer to 𝑅𝑖 as the agent’s rank, where 1 denotes the 

highest rank and −1 denotes the lowest rank.

An agent’s rank is determined by a combination of effort and luck 

(we assume, for simplicity, that agents have the same ability). Let 𝑞𝑒
denote the fraction of agents who exert effort. We assume that the ex­

pected rank of an agent 𝑖 who exerts effort 𝑒𝑖 is 𝑅(𝑒𝑖, 𝑞𝑒) = 𝑒𝑖 − 𝑞𝑒. This 

assumption ensures that the esteem competition is zero-sum: for any 𝑞𝑒, 
∫ 1
0 𝑅(𝑒𝑖, 𝑞𝑒) 𝑑𝑖 = 0.18

Agent 𝑖 is risk neutral and has a utility function that depends on the 

fraction of agents who exert effort (𝑞𝑒) and the fraction of agents on the 

network (𝑞𝑥):

𝑈 (𝑥𝑖, 𝑒𝑖, 𝑞𝑒, 𝑞𝑥) = (1 + 𝛼 ⋅ 𝑥𝑖)𝑅(𝑒𝑖, 𝑞𝑒)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Esteem Component

+ 𝛽 ⋅ 𝑞𝑥 ⋅ 𝑥𝑖
⏟⏞⏞⏟⏞⏞⏟

Connection Component

− 𝐶 ⋅ 𝑒𝑖.
⏟⏟⏟

Cost of Effort

+𝜖𝑖 ⋅ 𝑥𝑖 (4)

The first component—the “esteem component”—captures the agent’s 

concern about their rank (i.e., how they compare to others). The weight 

agents put on esteem depends on whether they are on or off the social 

network. Parameter 𝛼 ≥ 0 denotes the additional weight agents put on 

esteem when they are on the network. This captures the idea that social 

networks make self-comparisons more salient.19 ,20

The second component—the “connection component”—reflects the 

benefits agents on the network obtain from being able to connect with 

peers. We assume 𝛽 > 0.

The third component of the utility function is the cost of exerting 

effort. We assume that 𝐶 > 1, which ensures that agents who do not 

join the social network (𝑥𝑖 = 0) do not find it worthwhile to exert effort. 

This is a simple way of capturing the idea that agents who are off the 

network are less motivated to participate in the rat race for esteem.

The final component (𝜖𝑖) is agent 𝑖’s idiosyncratic preference for 

joining the network.

5.2 . Analysis

We separate our analysis into the case where esteem has low salience 

for agents on the network (𝛼 < 𝐶 − 1) and the case where it has high 

salience (𝛼 ≥ 𝐶 − 1).

Case 1: Esteem has low salience in the network (𝛼 < 𝐶 − 1)

When 𝛼 is low, for agents on the network, the returns to effort (1+𝛼), do 

not exceed the cost of effort (𝐶), so 𝑒𝑖 = 0. Similarly, for agents off the 

network, the returns to effort (1) do not exceed the cost (𝐶), so 𝑒𝑖 = 0. 

It follows that 𝑞𝑒 = 0 (𝑒𝑖 = 0 for all 𝑖) and 𝑅𝑖 = 0 for all 𝑖. Thus, the 

18 We do not need, for our purposes, to pin down the exact distributions over 

ranks.
19 In related theoretical work, Iyer and Katona (2016) consider a setting where 

intensifying competition among users for visibility can have negative effects on 

their welfare.
20 It might be natural to assume that the salience of comparisons (𝛼) grows 

with the size of the network (𝑞𝑥) as well. Our model easily accommodates this 

consideration, however it introduces an additional component in the payoff from 

joining the network. The resulting model can have multiple Nash equilibria, 

but qualitatively our results remain the same as every one of these equilibria 

is inefficient, for simplicity we focus on a fixed increase in the size of salience, 

which induces a unique equilibrium.

expected utility of agent 𝑖 is given by:

E(𝑈𝑖) = (1 + 𝛼 ⋅ 𝑥𝑖)𝑅𝑖(𝑒𝑖, 𝑞𝑒) + 𝛽 ⋅ 𝑞𝑥 ⋅ 𝑥𝑖 − 𝐶 ⋅ 𝑒𝑖 + 𝜖𝑖 ⋅ 𝑥𝑖
= 𝛽 ⋅ 𝑞𝑥 ⋅ 𝑥𝑖 + 𝜖𝑖 ⋅ 𝑥𝑖

We can rewrite the expected utility function as follows:

E(𝑈𝑖) =

{

𝛽 ⋅ 𝑞𝑥 + 𝜖𝑖, 𝑥𝑖 = 1,
0, 𝑥𝑖 = 0,

(5)

This corresponds to the model in Section 3 with 𝑎 = 𝛽 > 0, 𝑏 = 0, and 

𝜑(𝑞) = 𝑞.

Notice that this network is a “good network”: 𝑎 > 0 and 𝑎 > 𝑏. 
Intuitively, the network does not generate a rat race so its only function 

(connecting peers) is a positive one.

Case 2: Esteem has high salience in the network (𝛼 ≥ 𝐶 − 1)

When 𝛼 is high, for agents on the network, the returns to effort (1 + 𝛼), 

exceed the cost of effort (𝐶), so 𝑒𝑖 = 1. For agents off the network, the 

returns to effort (1) do not exceed the cost (𝐶), so 𝑒𝑖 = 0. It follows that 

𝑞𝑒 = 𝑞𝑥, 𝑒𝑖 = 𝑥𝑖, and 𝑅𝑖 = 𝑒𝑖 − 𝑞𝑥 = 𝑥𝑖 − 𝑞𝑥. Thus, the expected utility of 

agent 𝑖 is given by:

E(𝑈𝑖) = (1 + 𝛼 ⋅ 𝑥𝑖)𝑅𝑖(𝑒𝑖, 𝑞𝑒) + 𝛽 ⋅ 𝑞𝑥 ⋅ 𝑥𝑖 − 𝐶 ⋅ 𝑒𝑖 + 𝜖𝑖 ⋅ 𝑥𝑖
= (1 + 𝛼 ⋅ 𝑥𝑖)(𝑥𝑖 − 𝑞𝑥) + 𝛽 ⋅ 𝑞𝑥 ⋅ 𝑥𝑖 − 𝐶 ⋅ 𝑥𝑖 + 𝜖𝑖 ⋅ 𝑥𝑖

We can rewrite the expected utility function as follows:

E(𝑈𝑖) =

{

(𝛽 − 𝛼 − 1)𝑞𝑥 + (𝛼 − (𝐶 − 1)) + 𝜖𝑖, 𝑥𝑖 = 1,
−𝑞𝑥, 𝑥𝑖 = 0,

(6)

This exactly corresponds to the model in Section 3—with 𝑎 = 𝛽−𝛼−1, 𝑏 =
−1, and 𝜑(𝑞) = 𝑞—provided E((𝛼−(𝐶−1))+𝜖𝑖) = 0. It is a “bad network” 

(0 > 𝑎 > 𝑏) if, additionally, 𝛽 − 1 < 𝛼 < 𝛽. Intuitively, the negative 

aspect of the network (the rat race) outweighs the positive aspect of the 

network (connecting peers).

To illustrate the distinction between Cases 1 and 2, networks with 

low salience of esteem (Case 1) are often functional or utility-based net­

works, such as Dropbox, Slack, or older neighborhood listservs, where 

the primary utility is coordination or file sharing rather than public 

image. Conversely, we view typical examples of networks with high 

salience of esteem (Case 2) as media-rich social platforms like Instagram 

or TikTok. On these platforms, visibility metrics (likes, views, follower 

counts) are prominent, driving the competitive “rat race” (𝛼) described 

in our model.

Finally, without the normalized expectation, Eq. (6) corresponds to 

the model from Section 3 but with an additional constant term.21

The following proposition summarizes.

Proposition 4.

1. If esteem has low salience for network participants (𝛼 < 𝐶 − 1), the 

network is a good network.

2. If esteem has high salience for network participants (𝛼 ≥ 𝐶 − 1), the 

network is a bad network if E((𝛼−(𝐶−1))+𝜖𝑖) = 0 and 𝛽−1 < 𝛼 < 𝛽.

The salience of esteem 𝛼 might be a strategic choice variable for a 

platform. We might ask how increasing the salience of esteem affects the 

overall size of the network (𝑞𝑥). From Eq. (5), we see that when salience 

21 The model can easily be modified so that the social network not only reduces 

agents’ utility but also their esteem. Suppose agents who stay off the network are 

able to hold motivated beliefs about their rank because they lack information 

about how they compare. We can model this in simple terms by assuming agent 

𝑖’s esteem is boosted by 𝛾 if they stay off the network. With this modification, the 

network lowers esteem since it prevents agents from holding motivated beliefs.
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is low (𝛼 < 𝐶 − 1), increasing salience has no effect on the network’s 

size.

However, Eq. (6) shows that when salience is high (𝛼 ≥ 𝐶 −1), agent 

𝑖’s desire to join the network increases with 𝛼. Intuitively, increasing 𝛼
makes the rat race more intense, which puts more pressure on agents 

to join the network and participate in the rat race. Because we cannot 

rule out the possibility of multiple equilibria, we focus on the effect 

of 𝛼 in the largest equilibrium. In the largest equilibrium, increasing 

salience (𝛼) increases the network size (𝑞𝑥). The following proposition 

summarizes.

Proposition 5.

1. When the salience of esteem is low (𝛼 < 𝐶 − 1), raising salience has 

no effect on network size (𝑞𝑥).

2. When the salience of esteem is high (𝛼 ≥ 𝐶−1), raising salience weakly 

increases network size (𝑞𝑥) in the largest equilibrium.

5.3 . Social comparison on platforms

Proposition 5 suggests that a platform might try to increase the 

social-comparison aspects of its network (𝛼) as a way of driving par­

ticipation. There are a variety of design choices media platforms make 

that could raise 𝛼. Examples include prominently displaying engagement 

metrics such as “likes,” shares, and follower counts, and algorithmic 

feeds prioritizing content that performs well according to these metrics. 

Experimental evidence shows that exposure to “upward comparison” 

(content—profiles depicting more attractive lifestyles, higher social ac­

tivity, or healthier habits) lowers users’ self-esteem (see Vogel, Rose, 

Roberts and Eckles, 2014; Verduyn, Gugushvili, Massar, Täht and Kross, 

2020, for social comparison in the context of social media). By curating 

feeds to highlight such content, platforms make social comparison more 

salient (increase 𝛼), intensifying the competitive pressures in our model.

Recent empirical work has examined the trade-off between user wel­

fare and engagement. Beknazar-Yuzbashev, Jiménez-Durán, McCrosky, 

Stalinski and Mateusz (2025) show that reducing toxic content” on so­

cial media significantly lowers time spent and advertising impressions. 

While their findings are not about social comparison per se, toxic envi­

ronments may amplify social comparison (for example, through shaming, 

hostile commentary, or norm-enforcing harassment). In this sense, we 

observe a relationship—although not exact—between our model and 

these findings.

Several high-profile cases suggest that platforms recognize these 

harms yet preserve these features anyway. In 2019–2021, Instagram ran 

a global experiment hiding public “like” counts, with the stated aim “to 

make it less of a competition” (Booker, 2019). Independent evidence 

from Wallace and Buil (2021) and others shows that removing visible 

“likes” reduced negative affect and loneliness, consistent with lowering 

𝛼. The change received positive user feedback, but Instagram ultimately 

made it optional rather than the default—maintaining the competitive 

pressure that fuels engagement.

Taken together, the evidence points to a structural misalignment, 

wherein features that cause widespread harm also make social networks 

more profitable.

6 . Conclusion

There is significant evidence that social networks, despite their pop­

ularity, are harmful to users. In this paper, we ask why such networks 

arise in the first place, and what features make them “bad.”

We show that networks with the feature 0 > 𝑎 > 𝑏 are not only 

harmful if they get established but also get established easily. Effectively, 

these are parties that people do not like to attend but feel more and more 

pressure to attend as others choose to do so. A few “instigators” are all 

it takes to get such networks started.

While networks with the feature 0 > 𝑎 > 𝑏 might seem counterintu­

itive, we argue that they arise naturally in many settings. Rat races make 

networks bad—yet they also create pressure to join. We argue that rat 

races are a pervasive feature of social networks. Moreover, amplifying 

the rat-race nature of social networks boosts network size which, while 

harmful to consumers, may benefit the platforms.

This paper (see Proposition 3) suggests that traditional policies, such 

as Pigouvian taxation, can serve as helpful remedies. However, once net­

works are established, “marginal” policies may be insufficient to induce 

socially optimal outcomes.
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Appendix A . Proofs

A.1 . Proof of Proposition 1

To begin, we prove a lemma.

Lemma 3. For any 𝑞 ∈ (0, 1),

𝑑
𝑑𝑞

E
(

𝜖𝑖 ∶ 𝜖𝑖 > 𝐹−1(1 − 𝑞)
)

= 𝐹−1(1 − 𝑞).

Proof. Letting 𝜖 = 𝐹−1(1 − 𝑞), we can write

E
(

𝜖𝑖 ∶ 𝜖𝑖 > 𝜖
)

= ∫

𝑐

𝜖
𝜖𝑓 (𝜖) 𝑑𝜖.

So we have

𝑑𝜖
𝑑𝑞

= − 1
𝑓 (𝐹−1(1 − 𝑞))

= − 1
𝑓 (𝜖)

.

Hence by Leibniz integral rule,

𝑑
(

E
(

𝜖𝑖 ∶ 𝜖𝑖 > 𝜖
))

𝑑𝑞
= −𝜖𝑓 (𝜖) 𝑑𝜖

𝑑𝑞
= 𝜖,

which completes the proof. □

We now prove the proposition.

Proof. Recall that welfare is given by

𝑊 (𝑞) = 𝑎𝜑(𝑞)𝑞 + 𝑏𝜑(𝑞)(1 − 𝑞) + E(𝜖𝑖 ∶ 𝜖𝑖 > 𝜖).

To begin, suppose 𝑎 < 0. Then welfare cannot be maximized at 1 since 

𝑊 (0) = 0 > 𝑎 = 𝑊 (1). So either welfare is maximized at 0, or welfare is 

maximized at an interior point. For now, suppose that the optimum is 

interior. The first derivative of welfare is given by

𝑊 ′(𝑞) = 𝑎(𝑞𝜑′(𝑞) + 𝜑(𝑞)) + 𝑏((1 − 𝑞)𝜑′(𝑞) − 𝜑(𝑞)) + 𝐹−1(1 − 𝑞)

= (𝑎 − 𝑏)𝜑(𝑞) + (𝑎𝑞 + 𝑏(1 − 𝑞))𝜑′(𝑞) + 𝐹−1(1 − 𝑞)

where the 𝐹−1(1 − 𝑞) term comes from Lemma 3.

Now, in any interior equilibrium, Eq. (2) implies that

(𝑎 − 𝑏)𝜑(𝑞𝑁𝐸 ) + 𝐹−1(1 − 𝑞𝑁𝐸 ) = 0.

So it follows that

𝑊 ′(𝑞NE) = (𝑎 − 𝑏)𝜑
(

𝑞NE
)

+
(

𝑎 𝑞NE + 𝑏 (1 − 𝑞NE)
)

𝜑′(𝑞NE
)

+ 𝐹−1(1 − 𝑞NE
)

=
(

𝑎 𝑞NE + 𝑏 (1 − 𝑞NE)
)

𝜑′(𝑞NE
)

< 0. (A.7)

where the inequality comes from the fact that 𝑞𝑁𝐸 ∈ (0, 1) ⟹

𝜑′(𝑞𝑁𝐸 ) > 0 and 0 > 𝑎 > 𝑏 implies 𝑎𝑞 + 𝑏(1 − 𝑞) < 0 for all 𝑞. So in 
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any interior equilibrium, welfare can be improved by decreasing the 

number of agents on the network. It remains to show that there cannot 

be some other “global maximum” of the welfare function at 𝑞∗ > 𝑞𝑁𝐸 . 

Since the Nash equilibrium is unique, for any 𝑞 > 𝑞𝑁𝐸  we must have 

(𝑎 − 𝑏)𝜑(𝑞) + 𝐹−1(1 − 𝑞) < 0, and therefore

𝑊 ′(𝑞) = (𝑎 − 𝑏)𝜑(𝑞) + 𝐹−1(1 − 𝑞)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

<0

+ (𝑎𝑞 + 𝑏(1 − 𝑞))𝜑′(𝑞)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

<0

< 0,

which shows that the global maximum 𝑞∗ to the planner’s problem can 

never be larger than 𝑞𝑁𝐸 . Hence if 𝑞∗ is interior then 𝑞∗ < 𝑞𝑁𝐸 . Finally, 

if 𝑞∗ = 0 then clearly the NE is still too large since 𝑞𝑁𝐸 > 0 (in particular, 

𝑞𝑁𝐸 > 1
2 ). This proves Proposition 1 for bad networks.

Now suppose 𝑎 > 𝑏 > 0 so the network is good. Then by exactly the 

same reasoning, the slope of welfare at the NE is given by Eq. (A.7), 

which, for 𝑎, 𝑏 > 0 is strictly positive. Moreover, since (𝑎 − 𝑏)𝜑(𝑞) >
𝐹−1(1−𝑞) for 𝑞 < 𝑞𝑁𝐸  it follows that the smallest solution to the planner’s 

problem must be larger than 𝑞𝑁𝐸 , since in particular

(𝑎 − 𝑏)𝜑(𝑞) + (𝑎𝑞 + 𝑏(1 − 𝑞))𝜑′(𝑞) > (𝑎 − 𝑏)𝜑(𝑞) > −𝐹−1(1 − 𝑞).

That is, 𝑊 ′(𝑞) > 0 for 𝑞 < 𝑞𝑁𝐸 . Hence the welfare maximizing 

quantity is always larger than 𝑞𝑁𝐸 , which completes the proof of the

proposition. □

A.2 . Proof of Lemma 2

Proof. The lemma is immediate from the argument preceding Lemma 1. 

In particular, since 𝑞𝑁𝐸 > 1
2 , but the mass of agents with 𝜖𝑖 > 0 is 12 , any 

agent with 𝜖𝑖 < 0 who joins the network is strictly worse off than if the 

network never existed. These agents receive a strictly negative payoff in 

equilibrium but would receive 0 if 𝑞 = 0. □

A.3 . Proof of Proposition 2

We begin by proving part 1. of the proposition.

Proof. As argued in the text of Section 3 and depicted in Fig. 1, strictly 

more than 1
2  of all agents must join the network in any NE. This is 

because it is a dominant strategy to join for all agents with 𝜖𝑖 > 0, 

which leads to at least some agents with 𝜖𝑖 < 0 joining. Note that the 

equilibrium condition can be written as

(𝑎 − 𝑏)𝜑(𝑞𝑁𝐸 ) = −𝐹−1(1 − 𝑞𝑁𝐸 ). (A.8)

Since 𝐹−1(1 − 𝑞𝑁𝐸 ) < 𝐹−1( 12 ) = 0, (as 𝑓  is symmetrically distributed 

around 0), it follows that at any 𝑞 satisfying Eq. (A.8), the RHS −𝐹−1(1−
𝑞𝑁𝐸 ) is strictly positive. But for 𝑞 > 1

2  the RHS is also strictly convex. 

Indeed, it is easily shown that

− 𝑑2

𝑑𝑞2
𝐹−1(1 − 𝑞) =

𝑓 ′(𝐹−1(1 − 𝑞))

[𝑓 (𝐹−1(1 − 𝑞))]3
.

So for any 𝑞 > 1
2 , we have 𝐹−1(1 − 𝑞) < 0 ⟹ 𝑓 ′(𝐹−1(1 − 𝑞)) >

0, and the denominator is always positive, we conclude − 𝑑2

𝑑𝑞2
𝐹−1(1 −

𝑞) > 0. On the other hand, the LHS (𝑎 − 𝑏)𝜑(𝑞𝑁𝐸 ) is weakly concave 

by assumption, and 𝜑(0) = 0. Taken together, this implies that there is 

a unique equilibrium— a weakly concave and strictly convex function 

on [ 12 , 1] can have at most one intersection. Hence either there is an 

intersection at a point strictly less than 1, or else −𝐹−1(0) = 𝑐 ≤ (𝑎 − 𝑏), 
in which case the unique equilibrium is 𝑞𝑁𝐸 = 1, which proves part 1. 

of Proposition 2. □

Before we prove part 2. of the proposition, it is convenient to prove 

the following lemma.

Lemma 4. For all 𝑞 ∈ [0, 1],

E
(

𝜖𝑖 ∶ 𝜖𝑖 > 𝐹−1(1 − 𝑞)
)

≤ 𝑐𝑞. (A.9)

Proof. For notational simplicity, let 𝜖𝑞 = 𝐹−1(1 − 𝑞) and define

𝑇 (𝑞) ≡ ∫

𝑐

𝜖𝑞
𝜖𝑓 (𝜖) 𝑑𝜖.

Then since 𝜖 ≤ 𝑐 over the range of integration,

𝑇 (𝑞) ≤ ∫

𝑐

𝜖𝑞
𝑐𝑓 (𝜖) 𝑑𝜖 = 𝑐(𝐹 (𝑐) − 𝐹 (𝜖𝑞)) = 𝑐𝑞. □

We now prove part 2. of the proposition.

Proof. First, since 𝜑 is concave with 𝜑(0) = 0 and 𝜑(1) = 1, observe that 

we have the elementary bounds

𝑞 ≤ 𝜑(𝑞) ≤ 1. (A.10)

Using the lower bound and the fact that 𝑎, 𝑏 < 0, we have

𝑎𝜑(𝑞)𝑞 + 𝑏𝜑(𝑞)(1 − 𝑞) ≤ 𝑎𝑞2 + 𝑏𝑞(1 − 𝑞) = (𝑎 − 𝑏)𝑞2 + 𝑏𝑞. (A.11)

Combining Eq. (A.11) with Lemma 4 gives

𝑊 (𝑞) ≤ (𝑎 − 𝑏)𝑞2 + 𝑏𝑞 + 𝑐𝑞.

Since 𝑐 < −𝑎, we have

𝑊 (𝑞) ≤ (𝑎 − 𝑏)𝑞2 + 𝑏𝑞 − 𝑎𝑞

= −(𝑎 − 𝑏)𝑞(1 − 𝑞).

This proves that 𝑊 (𝑞) < 0 for all 𝑞 ∈ (0, 1). Finally, 𝑊 (1) = 𝑎 < 0, 

hence 𝑊 (𝑞) < 0 for all 𝑞 > 0 and so 𝑞∗ = 0 is uniquely optimal for the 

planner. Since an agent with the largest possible idiosyncratic benefit 𝑐
from joining the network receives −𝑎+ 𝑐 < 0 in the Nash equilibrium, it 

follows that all agents are worse off on the network in equilibrium. □

A.4 . Proof of Proposition 3

Proof. Define

𝐵(𝑞) ≡ (𝑎 − 𝑏)𝑞 + 𝐹−1(1 − 𝑞),

With 𝜑(𝑞) = 𝑞 and a constant tax 𝜏, agent 𝑖 joins the network if

𝜖𝑖 ≥ (𝑏 − 𝑎)𝑞 + 𝜏,

hence the equilibrium condition is

𝑞 = 1 − 𝐹
(

(𝑏 − 𝑎)𝑞 + 𝜏),

which is equivalent to 𝐵(𝑞) = 𝜏. Suppose the planner’s optimal partici­

pation 𝑞∗ ∈ (0, 1) is interior. Then the constant (Pigouvian) tax is given 

by

𝜏∗ = 𝜏𝑃 (𝑞∗) ≡ −
(

𝑎𝑞∗ + 𝑏(1 − 𝑞∗)
)

> 0.

Step 1 (Quantile–tail identity and concavity). Define

𝐻(𝑞) ≡ E[𝜖𝑖 ∶ 𝜖𝑖 > 𝐹−1(1 − 𝑞)] = ∫

𝑐

𝐹−1(1−𝑞)
𝑥 𝑓 (𝑥) 𝑑𝑥.

We know from Lemma 3 that

𝐻 ′(𝑞) = 𝐹−1(1 − 𝑞), 𝐻 ′′(𝑞) = − 1
𝑓
(

𝐹−1(1 − 𝑞)
) < 0,

so 𝐻  is strictly concave on (0, 1).
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With 𝜑(𝑞) = 𝑞, welfare is

𝑊 (𝑞) = (𝑎 − 𝑏)𝑞2 + 𝑏 𝑞 +𝐻(𝑞).

Recall that the planner’s optimum can never be 𝑞∗ = 1, since 𝑎 = 𝑊 (1) <
𝑊 (0) = 0. Moreover, if the planner’s optimum is 𝑞∗ = 0, the optimal 

policy bans the network, 𝜏∗ = +∞, and the unique equilibrium is 𝑞 =
0, so the result is immediate. Henceforth assume 𝑞∗ ∈ (0, 1). Then the 

first-order condition (FOC) is 

𝑊 ′(𝑞∗) = 0 ⟺ 2(𝑎 − 𝑏)𝑞∗ + 𝑏 +𝐻 ′(𝑞∗) = 0. (A.12)

Step 2 (Equilibrium at the optimal tax). Under the Pigouvian tax 

𝜏∗, the equilibrium condition for any 𝑞 ∈ (0, 1) is 𝐵(𝑞) = 𝜏∗. Since 𝜏∗ =
𝐵(𝑞∗), this implies 

(𝑎 − 𝑏)𝑞 +𝐻 ′(𝑞) = (𝑎 − 𝑏)𝑞∗ +𝐻 ′(𝑞∗). (A.13)

Combining (A.13) with the FOC (A.12) yields the identity 

(𝑎 − 𝑏)(𝑞 + 𝑞∗) +𝐻 ′(𝑞) + 𝑏 = 0, (A.14)

which holds for every equilibrium 𝑞.

Step 3 (Strict concavity gives a strict lower bound on 𝑊 (𝑞) −
𝑊 (𝑞∗)). Suppose for a contradiction that 𝑞 ≠ 𝑞∗ is an equilibrium under 

the tax 𝜏∗ (i.e., 𝑞 satisfies (A.13)). By strict concavity of 𝐻 ,

𝐻(𝑞) −𝐻(𝑞∗) > 𝐻 ′(𝑞) (𝑞 − 𝑞∗).

Therefore

𝑊 (𝑞) −𝑊 (𝑞∗) = (𝑎 − 𝑏)
(

𝑞2 − 𝑞∗2
)

+ 𝑏 (𝑞 − 𝑞∗) +
(

𝐻(𝑞) −𝐻(𝑞∗)
)

> (𝑎 − 𝑏)
(

𝑞2 − 𝑞∗2
)

+ 𝑏 (𝑞 − 𝑞∗) +𝐻 ′(𝑞) (𝑞 − 𝑞∗)

= (𝑞 − 𝑞∗)
[

(𝑎 − 𝑏)(𝑞 + 𝑞∗) + 𝑏 +𝐻 ′(𝑞)
]

= 0,

where the final equality follows from (A.14). Hence

𝑊 (𝑞) −𝑊 (𝑞∗) > 0,

which contradicts the optimality of 𝑞∗ for the planner. Therefore no 𝑞 ≠
𝑞∗ can solve (A.13), i.e., 𝐵(𝑞) = 𝜏 admits the unique solution 𝑞 = 𝑞∗. □

A.5 . Proof of Proposition 4

Proof. Proposition 4 is proven in the text of Section 5. □

A.6 . Proof of Proposition 5

Proof. First, suppose 𝛼 < 𝐶−1. Then by Eq. (5), utility does not depend 

on 𝛼. Hence raising the salience has no effect on incentives, and therefore 

on the network size 𝑞𝑥.

Now suppose 𝛼 ≥ 𝐶 − 1. Then by Eq. (6), agent 𝑖 joins the network 

when

𝜖𝑖 ≥ −𝛽𝑞𝑥 − 𝛼(1 − 𝑞𝑥) + 𝐶 − 1.

Since the RHS is strictly decreasing in 𝛼, the probability P(𝜖𝑖 > −𝛽𝑞𝑥 −
𝛼(1−𝑞𝑥)+𝐶−1) is weakly increasing in 𝛼. Hence the largest intersection 

of the line 𝑞𝑥 with P(𝜖𝑖 > −𝛽𝑞𝑥−𝛼(1−𝑞𝑥)+𝐶−1) is also weakly increasing 

in 𝛼. Therefore, the largest equilibrium network size 𝑞𝑥 (which is defined 

by the largest solution to 𝑞𝑥 = P(𝜖𝑖 > −𝛽𝑞𝑥 − 𝛼(1 − 𝑞𝑥) +𝐶 −1)) is weakly 

increasing in 𝛼, as claimed. □

Data availability

No data was used for the research described in the article.
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