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HIGHLIGHTS

« Networks are often thought to be beneficial because of network externalities.
« This paper is about the opposite case, which we call “bad networks”.

« If people feel compelled to participate in the network it causes a rat race that harms participants.

« Social networks are a leading example.

» The paper analyzes how bad networks arise and identifies features of networks that make them both harmful and easy to establish.

ARTICLE INFO ABSTRACT

JEL classification:

There is increasing evidence that social media is detrimental to mental health and self-esteem. A puzzle is why,

D21 in spite of this, people join these platforms. One possibility is that people feel compelled to participate: they
D26 dislike these networks—in particular, the way in which they generate rat races—but they need to be on them to
D85 socialize with peers. We refer to networks that harm users as “bad networks.” We model settings with network
Keywords: externalities and show that, surprisingly, bad networks are easy to establish. We also show that networks tend
Social networks to be both bad and easy to establish when they create rat races—as social networks often do. Amplifying the rat
Self-comparison race boosts network size which, while harmful to consumers, may benefit the platform.

Miscoordination

1. Introduction

The harmful effects of social media are becoming increasingly hard
to ignore. In his recent book, The Anxious Generation, Jonathan Haidt
argues that social media usage is fueling a mental health crisis among
young people. Since 2010, rates of major depression among teens have
risen by more than 150 percent, and the share of 8th, 10th, and 12th
graders who report being satisfied with themselves has dropped by
roughly 10 percentage points.! This decline in mental health began pre-
cisely when smartphones became widely adopted. Haidt illustrates the
crisis through the story of Alexis, who joined Instagram at age 11. At
first, she was thrilled, writing in her journal: “On Instagram I reached
127 followers. Ya! Let’s put it this way, if I was happy and excited
for 10 followers then this is just AMAZING!!!!” But her enthusiasm
quickly faded. Her feed soon filled with images of models, dieting
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advice, and eventually pro-anorexia content promoted by the platform’s
algorithms. By eighth grade, she was hospitalized for anorexia and
depression—struggles that continued throughout her teenage years.
While much of Haidt’s evidence is correlational, there is growing
causal evidence linking social media to mental health declines. For
example, Braghieri, Levy and Makarin (2022) exploit the staggered roll-
out of Facebook across U.S. college campuses to show that access to the
platform increased symptoms of poor mental health, particularly depres-
sion. Further evidence on mechanisms suggests these effects stem from
Facebook’s tendency to foster negative self-comparisons among users.
If social media has such deleterious effects, it raises the question:
why are people using these platforms? One answer is that social me-
dia may be addictive. Addiction researcher Anna Lembke embraces this
view, writing in Dopamine Nation, “the smartphone is the modern day
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1 The first statistic is based on data from the U.S. National Survey on Drug Use and Health; the second comes from the Monitoring the Future survey (see Haidt
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hypodermic needle, delivering digital dopamine 24/7 for a wired gener-
ation.”? Supporting this perspective, Allcott, Gentzkow and Song (2022)
provide causal evidence from a field experiment suggesting that addic-
tion accounts for roughly 31% of social media use. They find that usage
drops significantly when users can set limits on their future screen time.

However, another important aspect may be that people feel com-
pelled to join: they dislike these platforms but need to be on them to
socialize with their peers. According to this story, people are misco-
ordinated: they would be better off if they could socialize in another
way, but no individual has the power to make that change. Parents
seem to perceive this dilemma. As Jonathan Haidt puts it, “Most par-
ents don’t want their children to have a phone-based childhood, but
somehow the world has reconfigured itself so that any parent who re-
sists is condemning their children to social isolation.” A recent survey
of college students by Bursztyn, Handel, Jimenez and Roth (2023) pro-
vides more concrete evidence. They find that the average student would
need to be paid 59 dollars to get off TikTok for four weeks. By contrast,
the average student would pay 28 dollars to have TikTok deactivated for
everyone.

We refer to networks that harm users as “bad networks.” This pa-
per has two aims. First, we analyze why bad networks arise. One might
imagine that such networks are hard to establish—even when they are
technically feasible. Why would people flock to a network that they in-
tensely dislike—absent some form of irrationality? We show, perhaps
contrary to intuition, that bad networks can get started easily—like par-
ties that people do not wish to attend but feel obligated to go to when
others are going. The second aim of this paper is to identify the features
that make networks both bad and easy to establish. We show that this oc-
curs when networks generate rat races—as many social networks do. For
instance, users may continually escalate posting, self-promotion, and cu-
ration of their online personas to compete for likes, followers, and other
public signals of status, even when this arms race does not improve—and
may even reduce—their own well-being.

This paper is organized as follows. Section 2 provides an illustrative
example that demonstrates the idea of a bad network, where a large
number of agents join a network even though it is welfare-reducing.

Section 3 generalizes this example. It considers a setting where agents
face network externalities whether they join a network (parameterized
by a) or stay off (parameterized by b). We allow a and b to take arbi-
trary values. The interesting case arises when 0 > a > b: the network is
unpleasant for those who are on it, but even more unpleasant for those
who are off it. “Instigators” get these networks established. These in-
stigators then put pressure on other agents to join, creating a snowball
effect. Because agents do not internalize the externalities they inflict—in
particular, the pressure they put on other agents to join—these networks
grow to suboptimally large sizes (¢VE > ¢*).

In Section 4 we consider potential remedies, such as Pigouvian taxes.
While “marginal” policies may be sufficient to induce the socially opti-
mal outcome, more extreme policies are potentially needed to dislodge
established networks.

Section 5 then asks whether there are networks with the property
that 0 > a > b. We demonstrate that networks tend to have this feature
when they generate rat races. We provide explicit microfoundations for
a social network with this property. In the case we consider, agents make
two choices: whether to join a social network and whether to exert ef-
fort in a rat race. Agents on the network care more about the rat race
(i.e., how they compare to others) than agents off the network, which we
parameterize by a. We think of « as the extent to which the social net-
work creates concern among agents about social comparison. Networks
where « is large tend to have the property that 0 > a > b. In addition,
we show that the size of the network increases with a. Thus, amplify-
ing the rat race may be beneficial to a platform even if it is harmful to
consumers.

2 See Lembke (2021), p.1.
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Relative to the existing literature, our contribution is twofold. First,
while it is known that agents can miscoordinate on a bad network (see es-
pecially Bursztyn, Handel, Jimenez and Roth (2023), who build a model
with this property), existing work has not examined the ease or difficulty
with which such networks get established. This paper shows why—
perhaps surprisingly—it is easy to establish such networks.® Second,
while networks with the feature 0 > a > b might seem counterintu-
itive, we show that they arise naturally in many settings. Rat races make
networks bad and also create pressure to join.*

2. An illustrative example

Let us begin with an illustrative example. Consider a setting with
a unit mass of agents who simultaneously decide whether to join a
network. The utility of agent i € [0, 1] is given by:

bg, x;=0,
where x; = 1 (x; = 0) denotes the decision to join (stay off) the network,
and g € [0, 1] is the fraction of agents who join. Network participation
generates externalities for participants (captured by parameter a) and
non-participants (captured by parameter b). We assume a > b, so that
participants benefit more from the network than non-participants. Note
that Bursztyn, Handel, Jimenez and Roth (2023) also allows for such
negative externalities.

We will examine both the case where a > 0 and the case where a < 0.
The case where a < 0 might not seem intuitive. Why would participation
in a network generate negative externalities? However, we see such net-
works are common. In Section 5, we provide microfoundations for such
networks and convey an intuition for why they can arise. We argue that,
in cases where networks generate rat races—as tends to be true of social
networks—negative externalities are endemic.

To begin our analysis, notice that agents strictly prefer to join the
network when ¢ > 0 and they are indifferent between joining and staying
off when ¢ = 0. Thus, the game has two Nash equilibria: full participation
(¢NE = 1) and no participation (¢ = 0).

The agents’ aggregate welfare is given by

Wig) = (aq)q + (bg)(1 - ¢q)
—— N

benefit to those on the network  benefit to those off the network

We refer to the network as a “good network” if a > 0. It is easy to show
that, in this case, the welfare-maximizing value of ¢, denoted ¢*, is equal
to 1. We refer to the network as a “bad network” if a < 0. In this case,

3 The work of Bursztyn, Handel, Jimenez and Roth (2023) is perhaps the
closest paper to ours. They study an environment with negative spillovers to
non-users of a network which can lead to what they call “product market traps.”
In their model, the decentralized (rational expectations) equilibrium need not
be unique nor socially optimal. They point out that the introspective equilibrium
solution concept of Akerlof, Holden and Rayo (2023) permits them to select
the bad equilibrium provided there is a large enough fraction of early adopters
who want to use the product even when nobody else is using it. In an earlier
draft of their paper, they also note the possibility that a unique bad equilib-
rium might exist. We see the main contribution of our paper as making clear
why “bad networks” can get established easily. Relative to Bursztyn, Handel,
Jimenez and Roth (2023), we formalize the conditions under which a unique
bad equilibrium arises, and microfound the reason why network externalities
exist. Bursztyn, Handel, Jimenez and Roth (2023) are less focused on the ques-
tion of why it is easy for bad networks to get established and the primitives that
make the network “bad”.

4 The rat race in Section 5 of our paper relates to Tirole (2021) who analyzes a
model in which agents care about their image and choose whether to engage in
activity in the public or private sphere. He finds that social networks move activ-
ity, at a cost, from the private sphere into the public sphere, which is consistent
with our microfoundation.
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g* = 0. Intuitively, when participation generates positive spillovers (a >
0), aggregate welfare rises as more agents join the network—whereas
negative spillovers (¢ < 0) make participation socially harmful.

There are many prominent examples of networks that impose rel-
atively small costs on those off the network and have considerable
benefits for those on it. These might include services like Google Search,
Spotify recommendations, or Tesla Autopark, where each additional user
improves the underlying algorithm for everyone. Such networks are ones
that we would see as “good.” Social media, on the other hand, is a poten-
tial example of a bad network. These platforms can generate a “rat race”
of social comparison that is welfare-reducing for participants (a < 0),
while the experience for non-participants is made even worse by social
exclusion (b < a). As we will discuss further in Section 5, this creates the
very conditions for a bad network to thrive.

Putting the above findings together, we conclude that the following
types of outcomes are possible.

Good outcomes:

1. Full participation in a good network (¢Vf = ¢* = 1) can occur
when a > 0.

2. No participation on a bad network (¢ £ = ¢* = 0) can occur when
a<0.

Bad outcomes:

1. No participation in a good network (¢V¥ = 0 and ¢* = 1) can occur
when a > 0.

2. Full participation in a bad network (¢V¥ = 1 and ¢* = 0) can occur
when a < 0.

The first type of bad outcome—no participation in a good network—
is a well-understood coordination failure, in which agents fail to realize
mutual gains from participation.

In contrast, the second type of bad outcome—full participation on a
bad network—has received relatively little attention. This second fail-
ure can occur when a < 0; however, in that case, a good outcome—no
participation on a bad network—also remains possible. This raises a key
question: when a < 0, which outcome is more likely to prevail—the good
or the bad?

In the next section, we generalize our analysis to better understand
the circumstances where bad outcomes prevail. One might think that
bad networks would be difficult to establish, even if they are technically
possible. Why would people join a network they strongly dislike? Yet,
perhaps counterintuitively, such networks can form quite easily—much
like parties that no one wants to attend but feel compelled to join once
others start going.

3. Participation in good and bad networks

To generalize the example, assume that the utility of agent i € [0, 1]
is given by:

wiey = § ODT 2= )
bo(g), x; =0,

where ¢(0) = 0, (1) = 1, and ¢(q) is strictly increasing, twice differ-
entiable, and weakly concave.® The ¢,’s are distributed according to a
unimodal p.d.f. f(-) with support [—c, c], where ¢ € R U {+}. For ease

5 Taking @(1) = 1 is without loss of generality since we can always rescale
a and b. It is natural to assume that social networks have concave network
externalities. While early adopters may bring substantial value to the net-
work, network congestion, competition for attention, and over-saturation tend
to reduce the marginal value of participation as network size increases.
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of exposition, we assume that f is symmetric about 0 and atomless.® We
again assume that a > b.” Notice that the example from Section 2 cor-
responds to the case where ¢ = 0 and ¢(q) = g. In Section 5 we provide
an explicit microfoundation for preferences of the form given in Eq. (1)
(see Proposition 4).

To solve for the Nash equilibria of the game, notice that agent i
prefers to join the network if and only if ¢; > (b — @)p(g). Thus, in
equilibrium, the mass of agents who join the network must be equal
to P(e; > (b— a)p(q)) = 1 — F((b — a)p(q)), where F is the c.d.f. of f.

Hence, the Nash equilibrium must solve the following equation:
g"F = 1= F((b- ap(q"") @

When ¢ = 0, there are multiple Nash equilibria. However, when ¢ > 0
(in the spirit of a trembling-hand refinement), there is a unique Nash
equilibrium with ¢Vf > %.8 We state this formally in the following
lemma.

Lemma 1. For all ¢ > 0 there is a unique equilibrium. In this equilibrium,
qNE > 1
5

To understand the intuition behind this result, let us refer to agents
with ¢; > 0 as “instigators,” agents with ¢; < 0 as “resistors,” and agents
with ¢; = 0 as “neutral agents.”® We can interpret these groups through
the lens of the microfoundation we develop in Section 5. If agents have
heterogeneous preferences over social comparison, “instigators” (¢; > 0)
correspond to agents who derive high intrinsic utility from visibility and
status seeking—for example, influencers who benefit from the “rat race”
of esteem even before the network is large. Conversely, “resistors” (¢; <
0) might be individuals who are averse to social comparison or privacy
risks. Resistors only join the network once the mass of peers (g) becomes
sufficiently large that the benefit of social connection outweighs their
intrinsic distaste for the platform. When ¢ = 0, all agents are neutral;
but when ¢ > 0, there is a combination of instigators and resistors (plus
a zero-mass of neutral agents).

Notice that if no agents are on the network initially (¢, = 0), all
of the instigators will join. These instigators make up half of the pop-
ulation; thus, ¢ rises to ¢; = % When g increases to ¢;, some resistors
will also join, causing ¢ to rise further: to ¢, > ¢;. When ¢ increases
to ¢,, yet more agents will join. The unique Nash equilibrium corre-
sponds to the limit of this process: gV = lim (see Fig. 1 for an
illustration).1©

Agents’ idiosyncratic benefits/costs (¢;) have an impact on the wel-
fare analysis. Letting é(q) = F~!(1 — q), aggregate welfare is given by'!:

n—co dn

W (q) = (a—b)qe(q) + bo(q) + E(e; : € > &g)). 3

Let ¢* denote the value of ¢ that maximizes aggregate welfare. As in the
illustrative example, when ¢ = 0, so that¢; =0 forall i, ¢* =0ifa < 0
and ¢* = 1 if a > 0. However, ¢* might take a value between 0 and 1 if
¢ > 0. For instance, suppose there is one set of agents with ¢; large and
positive and a second set with ¢; large and negative. It might be optimal

6 Atomic distributions over ¢, are easily accommodated and yield even sharper
results.

7 The case where a < b— although not of much economic interest—is easily
handled and leads to similar types of inefficiency.

8 We thank an anonymous referee for pointing out the similarity between our
approach and trembling-hand equilibrium.

9 The term instigator is used by Granovetter (1978) to describe agents who
have a “0% threshold” for taking an action—that is, agents who are willing to
join a network in the absence of anyone else joining.

10 Note that if consumers not only have heterogeneous preferences over joining
the network (¢;) but also the network externalities (a and b) are heterogeneous
across consumers, there might be multiple equilibria.

! The notation E(e; : ¢, > &) is equivalent to E(e; 1, .¢,,) Where 1 is an
indicator function.
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Fig. 1. Starting from ¢ = 0, all instigators join the network, taking us to ¢, = %
Because a > b, this induces some resistors to join the network, taking us to g¢,,
and so on until we reach the unique solution ¢ ¥ of Eq. (2).

to have the first set join the network and the second set stay off the
network.

As before, we will use the terms “good network” and “bad network”
to refer, respectively, to networks that exhibit positive externalities (a >
0) and negative externalities (a < 0). The following proposition compares
the equilibrium level of network participation to the socially optimal
level for good and bad networks.

Proposition 1.

1. For good networks (a > 0), too few agents join the network relative to
the social optimum (¢NE < ¢*).

2. For bad networks (a < 0), too many agents join relative to the social
optimum (g* < g™V E).

Intuitively, instigators get a bad network started. Other agents then
join the bad network—even though they dislike it—because it is even
worse to be off the network (b < a). It is like a party that people find un-
pleasant but feel obliged to attend. As people join the network, they both
make the network more unpleasant and increase the pressure to join.
That is, they make it a party where attendance is more obligatory. This
externality leads to suboptimally high rates of network participation.
This effect also generates the following result.

Lemma 2. For bad networks (a < 0), there is a positive mass of agents on
the network who would be better off if the network did not exist.

Proposition 1 shows that, for all bad networks, too many agents join
relative to the social optimum. An extreme case—that can arise—is one
where all agents join the network even though it is optimal to have no
agents join. The following proposition provides conditions under which
we observe this outcome.

Proposition 2.

1. If ¢ < a— b, dll agents join the network in equilibrium (Nt = 1).
2. If ¢ < —a, dll agents are better off if there is no network (q = 0) than
if there is a network (q > 0). This implies, moreover, that g* = 0.

Intuitively, for a bad network where ¢ is small, resistors are not too
resistant to joining the network. Thus, when instigators join the net-
work, they create a snowball effect whereby all of the resistors join as
well (hence, ¢VE = 1). Moreover, for a bad network where ¢ is small,
agents’ idiosyncratic tastes (¢;’s) are not very important from a welfare
standpoint. The negative network externalities associated with having
agents join are the dominant welfare consideration. Thus, ¢* = 0.

Discussion
Propositions 1 and 2 explain why networks that are both socially unde-
sirable and harmful to users can nonetheless sustain large amounts of
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participation in equilibrium. Such “bad networks” are remarkably easy
to get going: even if instigators are not very inclined to join (i.e., even
if ¢ is very low) they can trigger a cascade in which the pressure to join
overwhelms any idiosyncratic dislike for the network. In the extreme,
all agents may join the network and yet prefer that it did not exist.

Our findings are supported by empirical evidence. Bursztyn, Handel,
Jimenez and Roth (2023) report that the average student prefers to
be on TikTok. They would need to be paid 59 dollars to get off of it
for four weeks. However, they would be willing to pay 28 dollars to
have TikTok deactivated for everyone. In this sense, these students are
miscoordinated— trapped on a bad network (in line with Lemma 2).

Internal company research at Meta points to the same conclusion. As
reported in the Wells, Horwitz and Seetharaman (2021) coverage of the
“Facebook Papers,” Meta’s own analyses acknowledged that Instagram
worsens body image issues for one in three teenage girls and that users
themselves blamed the platform for increases in anxiety and depres-
sion. In our framework, this is a real-world instance of a bad network:
widespread participation persists despite evidence of harm to many
users. In Section 5, we demonstrate that social media platforms have
incentives to exacerbate the harmful effects of their networks.

4. Policy

Of course, there are tools for correcting market failures.'? It is nat-
ural to consider Pigouvian taxation as a potential remedy since the
inefficiencies in the market arise due to externalities.!® Here, we show
that Pigouvian taxation may restore efficiency; however there are cases
where it does not work.

Let 7 denote the tax each agent pays when they join the network.
Agent i’s utility becomes:

v = ap(q) +e€ -,
" e,

Aggregate welfare is given by:

x; =1,

x; =0,

1
W™(q, 1) = / wdi + q-7
i=0 ——
tax revenue
agents’ utility

A Pigouvian tax charges each agent based on the marginal externality
they inflict:

7P(q) = —(aqg + b(1 — 9))¢'(9)

Suppose that, before agents choose whether to join the network, a social
planner announces that the tax on the network will be z”(¢*), where ¢*
is the socially optimal level of network participation.'* Does this tax
maximize aggregate welfare?'®

Proposition 3 provides conditions under which the Pigouvian tax
induces the welfare-maximizing outcome g*.

Proposition 3. Consider a bad network (0 > a > b) where ¢(q) = q and a
Pigouvian tax =¥ (¢q*) is imposed. There is a unique equilibrium outcome and
it is welfare-maximizing (q = q*).

12 There are also tools for addressing market failures arising from behavioral
biases (e.g., see Bernheim and Taubinsky (2018)). Although we focus on purely
rational agents, it would be an interesting question for future research to investi-
gate the implications of an extension of our model that accounts for well-known
behavioral biases or irrationalities.

13 In this section we focus on bad networks, but the optimal policy for good
networks mirrors Proposition 3 but with subsidies rather than taxes.

14 1If ¢* = 0 it is without loss of generality to set 7(¢*) = +co, which one can
think of as “banning the network.”

15 We thank the editor for highlighting the implications of our model for
optimal taxation.
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More generally, imposing a Pigouvian tax guarantees the existence of
an equilibrium that is welfare maximizing (¢ = ¢*); but this equilibrium
may not be unique. Thus, when ¢(q) # g, it is not guaranteed that a
Pigouvian tax will restore efficiency. The following example illustrates.

4.1. An example: where pigouvian taxes fail

Let us consider an example of a case where the Pigouvian tax does not
restore efficiency. For simplicity, we focus on an example where the
population consists of just two types: a mass of 0.2 instigators (1) and
0.8 resistors (R). Take utility to be

where instigators receive idiosyncratic utility ¢; = 3 from joining the
network, and resistors receive disutility ez = —2.5. Thus, in this example,
@(q) =¢* a=-2,and, b=-7.1°

Since ¢; > 0 and a > b, instigators strictly prefer to join the network
at all levels of ¢g. On the other hand, resistors prefer to join the network
when

24> =25> -7 < ¢>V05~07.

It follows that when only instigators are on the network, resistors prefer
not to join. However, if enough resistors join the network, resistors all
prefer to join. Hence there are exactly two Nash equilibria:

qQIE =0.2, and qZE =1.

From the Planner’s perspective, welfare is given by

—(7=59)q* + 3¢,
Wig) = )
—(7-5q)q” + 1.1 — 2.5q,

q<02
qg>0.2.

It is easily shown that welfare is increasing on [0, 0.2) and decreasing on
(0.2, 1]. It follows that the welfare-maximizing quantity is for only the
instigators to join the network: ¢* = 0.2.

Now, suppose that agents have coordinated on the largest equilib-
rium gNF = 1. What is the effect of the Pigouvian tax 77 (¢*) at this
quantity? Since ¢’(q) = 2q, we have

7(0.2) = —(a- 0.2 + b(1 — 0.2))¢’ (0.2) = 2.4.

We now show that this tax is not enough to get resistors to leave the
network. To see this, note that once the tax is imposed, resistors’ utility
from joining the network becomes —24¢% — 2.5 — 77(0.2) = —24*> — 4.9.
Hence resistors prefer to join whenever

—2¢°—49> -7 < gq> V098 ~0.99.

In other words, when ¢ = 1, resistors prefer to stay on the network, even
when subject to the Pigouvian tax. The tax required to deter resistors from
joining when ¢ = 1 is in fact any = > 2.5.

Intuitively, the Pigouvian tax is calibrated to the marginal external-
ity that a single agent imposes on others at a given network size. But
the bad equilibrium at (¢ = 1) is sustained by strong strategic com-
plementarities: when almost everyone is on the network, each resistor
compares “being on the bad network with everyone else” to “being off
the bad network while everyone else stays,” and the latter looks even
worse. A small tax that makes each individual internalize her marginal
impact is not enough to overturn that comparison, because any one
resistor who deviates has essentially no effect on the aggregate (g).

16 Although we take ¢(q) to be concave in Section 3, for illustrative purposes
we use a convex ¢ here.

Journal of Public Economics 254 (2026) 105574

To move the economy from the high-participation equilibrium (ng =1)
toward the lower-participation outcome, many resistors would need to
leave at once—but none of them internalizes the benefit their collective
exit would create.

This limitation of marginal taxation aligns with equilibrium-selection
results in the broader coordination literature. Akerlof, Holden and Rayo
(2023) show that when demand is S-shaped, an economy can get stuck
in a high-adoption state (like our bad network) unless a discrete “im-
pulse” pushes demand past a tipping threshold. Similarly, Halaburda
and Yehezkel (2019) demonstrate that when a platform enjoys a “focal-
ity advantage,” a standard price adjustment may be insufficient to shift
coordination; instead, a sufficiently large price gap is required to over-
come the focal equilibrium. In our setting, the Pigouvian tax corrects the
price at the margin, but fails to create the discrete utility wedge needed
to tip resistors away from the bad equilibrium.

As a consequence, a moderate, “marginal” tax can restore efficiency
locally (it would prevent further expansion of the network if we started
near the efficient outcome), but once the economy is stuck in the large
bad equilibrium it may not be strong enough to dislodge it. Achieving
the socially preferred outcome may require a more extreme policy—a
tax high enough to destroy the bad equilibrium altogether, or an out-
right ban on the network—rather than merely correcting the marginal
externality at the existing network size.!”

Finally, this logic connects to recent policy debates regarding bans
versus taxation. In the context of digital advertising, Acemoglu and
Johnson (2024) argue that the industry is “locked into a bad equilib-
rium” in which platforms are incentivised to garner engagement through
whatever means necessary in order to generate ad revenue. To remedy
this, they propose a significant tax on ad revenue to force a shift to
other business models (e.g., subscription). This aligns with our finding
that dislodging a bad network may require a large intervention rather
than a marginal price correction.

When taxation is difficult to implement, our model suggests that
quantity regulations can serve a similar function. Consider, for example,
Australia’s recent legislation to ban social media for users under 16—a
demographic for which levying taxes would be politically challenging.
If we consider social media adoption as a game among peers, status-
seeking early adopters act as “instigators.” They generate a critical mass
that drags the broader population of resistors into the network through
fear of social exclusion. By preventing these instigators from joining
the network, the policy removes the impulse required to tip the local
peer network into an inefficient, high-participation equilibrium. Thus,
targeted bans can be viewed as a mechanism to resolve coordination
failures.

5. When are social networks bad?

In Section 3, we showed that networks get going easily when net-
works are bad (0 > a > b)—perhaps contrary to intuition. A remaining
question is whether there are networks, such as social networks, that are
prone to being bad.

Here, we discuss a force that we see as important in making networks
bad: rat races. Many networks generate competition between agents.
Social networks, for instance, tend to generate competition by making
users more aware of how they compare to one another. Agents may join
the network because they feel the need to participate in the competition;
however they may prefer to have no network, so the competition can be
avoided. Here, we provide microfoundations for this idea, focusing on

17 This suggests that optimal policy in these settings may need to be dynamic.
Consistent with the “impulse” logic in Akerlof, Holden and Rayo (2023) or the
dynamic pricing analysis in Halaburda and Yehezkel (2019), a planner might
first need to impose a temporary, extreme tax (greater than %) to “kill” a bad
focal equilibrium. Once the economy has tipped into the efficient basin of at-
traction, the tax can be adjusted to the standard Pigouvian level to maintain
optimality.
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the case of social networks. We also show why it may be in the interest of
platforms to promote competition—despite its negative consequences.

5.1. Model

Suppose there is a unit mass of agents and each decides whether to
join a social network (x; = 0 or 1) and whether to exert effort (¢; = 0
or 1). The effort the agent exerts is part of a zero-sum competition for
esteem. We denote the agent’s outcome in the esteem competition by
R; € [-1,1] and refer to R; as the agent’s rank, where 1 denotes the
highest rank and —1 denotes the lowest rank.

An agent’s rank is determined by a combination of effort and luck
(we assume, for simplicity, that agents have the same ability). Let g,
denote the fraction of agents who exert effort. We assume that the ex-
pected rank of an agent i who exerts effort e; is R(e;,q,) = ¢; — g,. This
assumption ensures that the esteem competition is zero-sum: for any g,,
i) Re;q,)di =0.18

Agent i is risk neutral and has a utility function that depends on the
fraction of agents who exert effort (g,) and the fraction of agents on the
network (g,):

B-qy-x;
——

Connection Component

Ulx;,ei.q,,90) = 1+ a-x)R(e;q,)  +
N—_—
Esteem Component
- C-e. +€-Xx; 4

Cost of Effort

The first component—the “esteem component”—captures the agent’s
concern about their rank (i.e., how they compare to others). The weight
agents put on esteem depends on whether they are on or off the social
network. Parameter « > 0 denotes the additional weight agents put on
esteem when they are on the network. This captures the idea that social
networks make self-comparisons more salient.!?20

The second component—the “connection component”—reflects the
benefits agents on the network obtain from being able to connect with
peers. We assume f > 0.

The third component of the utility function is the cost of exerting
effort. We assume that C > 1, which ensures that agents who do not
join the social network (x; = 0) do not find it worthwhile to exert effort.
This is a simple way of capturing the idea that agents who are off the
network are less motivated to participate in the rat race for esteem.

The final component (¢;) is agent i’s idiosyncratic preference for
joining the network.

5.2. Analysis

We separate our analysis into the case where esteem has low salience
for agents on the network (¢« < C — 1) and the case where it has high
salience (a > C — 1).

Case 1: Esteem has low salience in the network (« < C — 1)

When « is low, for agents on the network, the returns to effort (1+a), do
not exceed the cost of effort (C), so e; = 0. Similarly, for agents off the
network, the returns to effort (1) do not exceed the cost (C), so ¢; = 0.
It follows that g, = 0 (¢; = 0 for all i) and R; = O for all i. Thus, the

18 We do not need, for our purposes, to pin down the exact distributions over
ranks.

19 In related theoretical work, Iyer and Katona (2016) consider a setting where
intensifying competition among users for visibility can have negative effects on
their welfare.

20 1t might be natural to assume that the salience of comparisons (a) grows
with the size of the network (q,) as well. Our model easily accommodates this
consideration, however it introduces an additional component in the payoff from
joining the network. The resulting model can have multiple Nash equilibria,
but qualitatively our results remain the same as every one of these equilibria
is inefficient, for simplicity we focus on a fixed increase in the size of salience,
which induces a unique equilibrium.
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expected utility of agent i is given by:

EWU)=(0+a-x)R;(e;,q,)+P g, x;—C-e;+¢€ -Xx;

=p-q X +€ X

We can rewrite the expected utility function as follows:

p-q.+e,
EWU,) =
0y {0

=l 5)

5 X,':O,

This corresponds to the model in Section 3 with a = > 0, b = 0, and
(@) =q.

Notice that this network is a “good network™ a > 0 and a > b.
Intuitively, the network does not generate a rat race so its only function
(connecting peers) is a positive one.

Case 2: Esteem has high salience in the network (¢« > C - 1)

When « is high, for agents on the network, the returns to effort (1 + «),
exceed the cost of effort (C), so e; = 1. For agents off the network, the
returns to effort (1) do not exceed the cost (C), so ¢; = 0. It follows that
4. = 4y, ¢; = X;, and R; = ¢; — g, = x; — q,.. Thus, the expected utility of
agent i is given by:

EWU;)=(0+a-x)R;(e;,q,)+P g, x;—C-e;+¢€ -Xx;
=+a-x)x;—q)+pf-q.-x;—C-x;+¢€ -X;

We can rewrite the expected utility function as follows:

(6)
—dx> X; = 0,

B {(ﬂ—a— g, +(@—(C—-1)+e, x =1,
This exactly corresponds to the model in Section 3—witha = f—a—1,b =
—1, and ¢(gq) = g—provided E((a — (C — 1)) +¢;) = 0. It is a “bad network”
(0 > a > b) if, additionally, f — 1 < a < f. Intuitively, the negative
aspect of the network (the rat race) outweighs the positive aspect of the
network (connecting peers).

To illustrate the distinction between Cases 1 and 2, networks with
low salience of esteem (Case 1) are often functional or utility-based net-
works, such as Dropbox, Slack, or older neighborhood listservs, where
the primary utility is coordination or file sharing rather than public
image. Conversely, we view typical examples of networks with high
salience of esteem (Case 2) as media-rich social platforms like Instagram
or TikTok. On these platforms, visibility metrics (likes, views, follower
counts) are prominent, driving the competitive “rat race” (a) described
in our model.

Finally, without the normalized expectation, Eq. (6) corresponds to
the model from Section 3 but with an additional constant term.2!

The following proposition summarizes.

Proposition 4.

1. If esteem has low salience for network participants (a < C — 1), the
network is a good network.

2. If esteem has high salience for network participants (a > C — 1), the
network is a bad network if E((a —(C—1))+¢;) =0and f—1 < a < .

The salience of esteem o might be a strategic choice variable for a
platform. We might ask how increasing the salience of esteem affects the
overall size of the network (g,). From Eq. (5), we see that when salience

21 The model can easily be modified so that the social network not only reduces
agents’ utility but also their esteem. Suppose agents who stay off the network are
able to hold motivated beliefs about their rank because they lack information
about how they compare. We can model this in simple terms by assuming agent
i’s esteem is boosted by y if they stay off the network. With this modification, the
network lowers esteem since it prevents agents from holding motivated beliefs.
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is low (@ < C — 1), increasing salience has no effect on the network’s
size.

However, Eq. (6) shows that when salience is high (« > C —1), agent
i’s desire to join the network increases with a. Intuitively, increasing «
makes the rat race more intense, which puts more pressure on agents
to join the network and participate in the rat race. Because we cannot
rule out the possibility of multiple equilibria, we focus on the effect
of a in the largest equilibrium. In the largest equilibrium, increasing
salience («) increases the network size (g,). The following proposition
summarizes.

Proposition 5.

1. When the salience of esteem is low (a < C — 1), raising salience has
no effect on network size (q..).

2. When the salience of esteem is high (a« > C —1), raising salience weakly
increases network size (q,) in the largest equilibrium.

5.3. Social comparison on platforms

Proposition 5 suggests that a platform might try to increase the
social-comparison aspects of its network (a) as a way of driving par-
ticipation. There are a variety of design choices media platforms make
that could raise a. Examples include prominently displaying engagement
metrics such as “likes,” shares, and follower counts, and algorithmic
feeds prioritizing content that performs well according to these metrics.
Experimental evidence shows that exposure to “upward comparison”
(content—profiles depicting more attractive lifestyles, higher social ac-
tivity, or healthier habits) lowers users’ self-esteem (see Vogel, Rose,
Roberts and Eckles, 2014; Verduyn, Gugushvili, Massar, Téht and Kross,
2020, for social comparison in the context of social media). By curating
feeds to highlight such content, platforms make social comparison more
salient (increase a), intensifying the competitive pressures in our model.

Recent empirical work has examined the trade-off between user wel-
fare and engagement. Beknazar-Yuzbashev, Jiménez-Duran, McCrosky,
Stalinski and Mateusz (2025) show that reducing toxic content” on so-
cial media significantly lowers time spent and advertising impressions.
While their findings are not about social comparison per se, toxic envi-
ronments may amplify social comparison (for example, through shaming,
hostile commentary, or norm-enforcing harassment). In this sense, we
observe a relationship—although not exact—between our model and
these findings.

Several high-profile cases suggest that platforms recognize these
harms yet preserve these features anyway. In 2019-2021, Instagram ran
a global experiment hiding public “like” counts, with the stated aim “to
make it less of a competition” (Booker, 2019). Independent evidence
from Wallace and Buil (2021) and others shows that removing visible
“likes” reduced negative affect and loneliness, consistent with lowering
a. The change received positive user feedback, but Instagram ultimately
made it optional rather than the default—maintaining the competitive
pressure that fuels engagement.

Taken together, the evidence points to a structural misalignment,
wherein features that cause widespread harm also make social networks
more profitable.

6. Conclusion

There is significant evidence that social networks, despite their pop-
ularity, are harmful to users. In this paper, we ask why such networks
arise in the first place, and what features make them “bad.”

We show that networks with the feature 0 > a > b are not only
harmful if they get established but also get established easily. Effectively,
these are parties that people do not like to attend but feel more and more
pressure to attend as others choose to do so. A few “instigators” are all
it takes to get such networks started.

While networks with the feature 0 > a > b might seem counterintu-
itive, we argue that they arise naturally in many settings. Rat races make
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networks bad—yet they also create pressure to join. We argue that rat
races are a pervasive feature of social networks. Moreover, amplifying
the rat-race nature of social networks boosts network size which, while
harmful to consumers, may benefit the platforms.

This paper (see Proposition 3) suggests that traditional policies, such
as Pigouvian taxation, can serve as helpful remedies. However, once net-
works are established, “marginal” policies may be insufficient to induce
socially optimal outcomes.
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Appendix A. Proofs
A.1. Proof of Proposition 1
To begin, we prove a lemma.

Lemma 3. Forany q € (0,1),

iI[E(e[ :

p 6> F'1-9)=F'1-g.

Proof. Letting ¢ = F~!(1 — ¢), we can write
c
E(e; : € >¢€) =/ ef(e)de.
¢

So we have

dé 1 1

g JFETA—q) @
Hence by Leibniz integral rule,

d (E(e; :
dq

€ >€ c
Edd) S
dq
which completes the proof. |
We now prove the proposition.

Proof. Recall that welfare is given by
W(g) = ap(q)q + bp(g)(1 — q) + E(e; : € > €).

To begin, suppose a < 0. Then welfare cannot be maximized at 1 since
W(0) =0 > a= W(1). So either welfare is maximized at 0, or welfare is
maximized at an interior point. For now, suppose that the optimum is
interior. The first derivative of welfare is given by
W' (g) = a9 () + (@) + b((1 — 9)¢'(9) — (@) + F~'(1 — g)

= (a - b)p(g) + (ag + b(1 — )¢’ (@) + F~'(1 - g)

where the F~!(1 — ¢) term comes from Lemma 3.
Now, in any interior equilibrium, Eq. (2) implies that

(a-be@"E)y+ F'(1-¢"F)=0.

So it follows that

W' (@) = (a_b)(p(qNE) i (anE +b(1 _qNE)) (p/(qNE) i F—l(] _qNE)
_ (anE +b( _qNE)) (p/(qNE)
<0. (A7)

where the inequality comes from the fact that ¢V € (0,1) =
@' (@VE) > 0and 0 > a > b implies aq + b(1 — g) < O for all ¢. So in
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any interior equilibrium, welfare can be improved by decreasing the
number of agents on the network. It remains to show that there cannot
be some other “global maximum” of the welfare function at ¢* > ¢VE.
Since the Nash equilibrium is unique, for any g > ¢¥* we must have
(a—b)p(q) + F~'(1 — q) < 0, and therefore

W'(q) = (a= Do) + Fi(1- 9)+(ag + b(l - )¢’ (q) <0,

<0 <0

which shows that the global maximum ¢* to the planner’s problem can
never be larger than ¢V £. Hence if ¢* is interior then ¢* < ¢™ . Finally,
if ¢* = 0 then clearly the NE is still too large since ¢V £ > 0 (in particular,
gNE > %). This proves Proposition 1 for bad networks.

Now suppose a > b > 0 so the network is good. Then by exactly the
same reasoning, the slope of welfare at the NE is given by Eq. (A.7),
which, for a,b > 0 is strictly positive. Moreover, since (a — b)p(q) >
F~1(1—q) for g < ¢ ¥ it follows that the smallest solution to the planner’s
problem must be larger than ¢V, since in particular

(a—b)g(g) + (ag + b(1 — 9)¢'(q) > (a - b)p(q) > —F~'(1 - g).

That is, W'(q) > 0 for ¢ < ¢"NE. Hence the welfare maximizing
quantity is always larger than ¢ ¥, which completes the proof of the
proposition. O

A.2. Proof of Lemma 2

Proof. The lemma is immediate from the argument preceding Lemma 1.
In particular, since gV F > %, but the mass of agents with ¢; > 0 is 1, any
agent with ¢; < 0 who joins the network is strictly worse off than if the
network never existed. These agents receive a strictly negative payoff in
equilibrium but would receive 0 if g = 0. O

A.3. Proof of Proposition 2
We begin by proving part 1. of the proposition.

Proof. As argued in the text of Section 3 and depicted in Fig. 1, strictly
more than % of all agents must join the network in any NE. This is
because it is a dominant strategy to join for all agents with ¢; > 0,
which leads to at least some agents with ¢; < 0 joining. Note that the
equilibrium condition can be written as

(@=bg@"F) = -F~'(1-g"F). (A.8)

Since F~'(1 — ¢VF) < F“(%) = 0, (as f is symmetrically distributed
around 0), it follows that at any g satisfying Eq. (A.8), the RHS —F~(1 —
¢"E) is strictly positive. But for ¢ > % the RHS is also strictly convex.
Indeed, it is easily shown that
2 rep-1¢1 —
—%F"(l = STFEA q))S.
q [f(F1(1 =)

So for any ¢q > % we have F7l(1-¢) < 0 = f/(F'(1-gq) >
0, and the denominator is always positive, we conclude —%F*‘(l -

g) > 0. On the other hand, the LHS (a — b)p(¢VF) is weakly concave
by assumption, and ¢(0) = 0. Taken together, this implies that there is
a unique equilibrium— a weakly concave and strictly convex function
on [%, 1] can have at most one intersection. Hence either there is an
intersection at a point strictly less than 1, or else —F~'(0) = ¢ < (a — b),
in which case the unique equilibrium is ¢V £ = 1, which proves part 1.
of Proposition 2. O

Before we prove part 2. of the proposition, it is convenient to prove
the following lemma.
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Lemma 4. Forall q € [0, 1],

]E(e- :

i

€ > Fl1- q)) <cq. (A.9)
Proof. For notational simplicity, let e, = F ~I(1 — ¢) and define

T(9) = / ef(e)de.

q
Then since € < ¢ over the range of integration,

T(g) < / cf(e)de = c(F(c) = F(e,)) = cq. O

q

We now prove part 2. of the proposition.

Proof. First, since ¢ is concave with ¢(0) = 0 and ¢(1) = 1, observe that
we have the elementary bounds

g< o9 <1 (A.10)
Using the lower bound and the fact that a, b < 0, we have
ap()q + bp(@)(1 = ¢) < ag” +bg(1 = ¢) = (a = b)g* + bg. (A1)

Combining Eq. (A.11) with Lemma 4 gives
W(q) < (a—b)g’ +bg + cq.
Since ¢ < —a, we have

W (g) < (a—b)g* +bg — aq
= —(a—b)q(l - g).

This proves that W(q) < 0 for all ¢ € (0, 1). Finally, W(1) = a < 0,
hence W (gq) < 0 for all 4 > 0 and so ¢* = 0 is uniquely optimal for the
planner. Since an agent with the largest possible idiosyncratic benefit ¢
from joining the network receives —a + ¢ < 0 in the Nash equilibrium, it
follows that all agents are worse off on the network in equilibrium. []

A.4. Proof of Proposition 3
Proof. Define

B(g)=(a=bg+F'(1-q),

With ¢(q) = ¢ and a constant tax z, agent i joins the network if
€ >2(b-aqg+r,

hence the equilibrium condition is

g=1-F((b-a)q+7),

which is equivalent to B(q) = z. Suppose the planner’s optimal partici-
pation ¢* € (0, 1) is interior. Then the constant (Pigouvian) tax is given
by

=P = —(aq*+b(1—q*)) > 0.

Step 1 (Quantile-tail identity and concavity). Define

H(@g) = Ele;: > Fl(1-¢)] = / x f(x)dx.
F=1(1-q)
We know from Lemma 3 that
_ 1
H(@=F'-¢9, H'(@=-———— <0,
A(F1(1 - )

so H is strictly concave on (0, 1).
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With ¢(q) = q, welfare is
W(q) = (a—b)g* + bq + H(q).

Recall that the planner’s optimum can never be ¢* = 1, since a = W (1) <
W (0) = 0. Moreover, if the planner’s optimum is ¢* = 0, the optimal
policy bans the network, * = +o0, and the unique equilibrium is g =
0, so the result is immediate. Henceforth assume ¢* € (0, 1). Then the
first-order condition (FOC) is

W' (@H=0 < 2a-byg"+b+H'(g")=0. (A.12)

Step 2 (Equilibrium at the optimal tax). Under the Pigouvian tax
7*, the equilibrium condition for any ¢ € (0,1) is B(q) = z*. Since t* =
B(g™*), this implies

(a-byg+H'(q) = (a—b)yq*+H'(¢"). (A.13)
Combining (A.13) with the FOC (A.12) yields the identity
(a—-b)g+q")+H'(@)+b = 0, (A.14)

which holds for every equilibrium ¢.

Step 3 (Strict concavity gives a strict lower bound on W(q) —
W (g*)). Suppose for a contradiction that g # ¢* is an equilibrium under
the tax =* (i.e., ¢ satisfies (A.13)). By strict concavity of H,

H(qg)- H(q") > H'(9)(q—4q").

Therefore

W) - W@ = (a-b)( —q?) +ba—g") + (H@) - H(g")
(@a-b)(P-q2) +ba—g)+H @@ -q")
= @-g)|@=bxg+q)+b+ H'(Q)]

=0,

\

where the final equality follows from (A.14). Hence
Wi(g-W({q") > 0,

which contradicts the optimality of ¢* for the planner. Therefore no g #
g* can solve (A.13), i.e., B(q) =  admits the unique solution ¢ = ¢*. ]

A.5. Proof of Proposition 4

Proof. Proposition 4 is proven in the text of Section 5. O

A.6. Proof of Proposition 5

Proof. First, suppose a < C — 1. Then by Eq. (5), utility does not depend
on a. Hence raising the salience has no effect on incentives, and therefore
on the network size g,.

Now suppose a > C — 1. Then by Eq. (6), agent i joins the network
when
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€ >—fq,—a(l-q)+C—1.

Since the RHS is strictly decreasing in «, the probability P(e; > —fq, —
a(l1—g,)+C—1) is weakly increasing in «. Hence the largest intersection
of the line g, with P(¢; > —fgq, —a(1—g,)+C—1) is also weakly increasing
in a. Therefore, the largest equilibrium network size ¢, (which is defined
by the largest solution to g, = P(¢; > —fg, — a(1 —gq,) + C — 1)) is weakly
increasing in «, as claimed. O
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