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Abstract

There is increasing evidence that social media is detrimental to mental
health and self-esteem. A puzzle is why, in spite of this, people join these plat-
forms. One possibility is that people feel compelled to participate: they dislike
these networks—in particular, the way in which they generate rat races—but
they need to be on them to socialize with peers. We refer to networks that
harm users as “bad networks.” We model settings with network externalities
and show that, surprisingly, bad networks are easy to establish. We also show
that networks tend to be both bad and easy to establish when they create rat
races—as social networks often do. Amplifying the rat race boosts network

size which, while harmful to consumers, may benefit the platform.

Keywords: Social networks, self-comparison, miscoordination.

JEL Codes: D21, D26, DS85.

*UNSW Business School, email: r.akerlof@unsw.edu.au.
FUNSW Business School, email: richard.holden@unsw.edu.au.
FUNSW Business School, email: d.thornton@unsw.edu.au.



1 Introduction

The harmful effects of social media are becoming increasingly hard to ignore. In his
recent book, The Anxious Generation, Jonathan Haidt argues that social media usage
is fueling a mental health crisis among young people. Since 2010, rates of major
depression among teens have risen by more than 150 percent, and the share of 8th,
10th, and 12th graders who report being satisfied with themselves has dropped
by roughly 10 percentage points.! This decline in mental health began precisely
when smartphones became widely adopted. Haidt illustrates the crisis through
the story of Alexis, who joined Instagram at age 11. At first, she was thrilled,
writing in her journal: “On Instagram I reach 127 followers. Ya! Let’s put it this
way, if I was happy and excited for 10 followers then this is just AMAZING!!!!”
But her enthusiasm quickly faded. Her feed soon filled with images of models,
dieting advice, and eventually pro-anorexia content promoted by the platform’s
algorithms. By eighth grade, she was hospitalized for anorexia and depression—
struggles that continued throughout her teenage years.

While much of Haidt’s evidence is correlational, there is growing causal evi-
dence linking social media to mental health declines. For example, Braghieri et al.
(2022) exploit the staggered rollout of Facebook across U.S. college campuses to
show that access to the platform increased symptoms of poor mental health, par-
ticularly depression. Further evidence on mechanisms suggests these effects stem
from Facebook’s tendency to foster negative self-comparisons among users.

If social media has such deleterious effects, it raises the question: why are peo-
ple using these platforms? One answer is that social media may be addictive.
Addiction researcher Anna Lembke embraces this view, writing in Dopamine Na-
tion, “the smartphone is the modern day hypodermic needle, delivering digital
dopamine 24/7 for a wired generation.”? Supporting this perspective, Allcott et
al. (2022) provide causal evidence from a field experiment suggesting that addic-
tion accounts for roughly 31% of social media use. They find that usage drops
significantly when users can set limits on their future screen time.

However, another important aspect may be that people feel compelled to join:

they dislike these platforms but need to be on them to socialize with their peers.

The first statistic is based on data from the U.S. National Survey on Drug Use and Health; the
second comes from the Monitoring the Future survey (see Haidt (2024)).
2See Lembke (2021), p.1.



According to this story, people are miscoordinated: they would be better off if
they could socialize in another way, but no individual has the power to make that
change. Parents seem to perceive this dilemma. As Jonathan Haidt puts it, “Most
parents don’t want their children to have a phone-based childhood, but somehow
the world has reconfigured itself so that any parent who resists is condemning
their children to social isolation.” A recent survey of college students by Bursztyn
et al. (2023) provides more concrete evidence. They find that the average student
would need to be paid 59 dollars to get off of TikTok for four weeks. By contrast,
the average student would pay 28 dollars to have TikTok deactivated for everyone.

We refer to networks that harm users as “bad networks.” This paper has two
aims. First, we analyze why bad networks arise. One might imagine that such
networks are hard to establish—even when they are technically feasible. Why
would people flock to a network that they intensely dislike—absent some form
of irrationality? We show, perhaps contrary to intuition, that bad networks can get
started easily—like parties that people do not wish to attend but feel obligated to
when others are going. The second aim of this paper is to identify the features that
make networks both bad and easy to establish. We show that this occurs when
networks generate rat races—as many social networks do. For instance, users may
continually escalate posting, self-promotion, and curation of their online personas
to compete for likes, followers, and other public signals of status, even when this
arms race does not improve—and may even reduce—their own well-being.

This paper is organized as follows. Section 2 provides an illustrative example
that demonstrates the idea of a bad network, where a large number of agents join
a network even though this is welfare-reducing.

Section 3 generalizes this example. It considers a setting where agents face
network externalities whether they join a network (parameterized by a) or stay off
(parameterized by b). We allow a and b to take arbitrary values. The interesting
case arises when 0 > a > b: the network is unpleasant for those who are on it, but
even more unpleasant for those who are off it. “Instigators” get these networks
established. These instigators then put pressure on other agents to join, creating a
snowball effect. Because agents do not internalize the externalities they inflict—in
particular, the pressure they put on other agents to join—these networks grow to
suboptimally large sizes (¢V¥ > ¢*).

In Section 4 we consider potential remedies, such as Pigouvian taxes. While



“marginal” policies may be sufficient to induce the socially optimal outcome, more
extreme policies are potentially needed to dislodge established networks.

Section 5 then asks whether there are networks with the property that 0 > a > b.
We demonstrate that networks tend to have this feature when they generate rat
races. We provide explicit microfoundations for a social network with this prop-
erty. In the case we consider, agents make two choices: whether to join a social
network and whether to exert effort in a rat race. Agents on the network care more
about the rat race (i.e. how they compare to others) than agents off the network,
which we parameterize by o. We think of « as the extent to which the social net-
work creates concern among agents about social comparison. Networks where o
is large tend to have the property that 0 > a > b. In addition, we show that the size
of the network is increasing in o. Thus, amplifying the rat race may be beneficial
to a platform even if it is harmful to consumers.

Relative to the existing literature, our contribution is twofold. First, while it is
known that agents can miscoordinate on a bad network (see especially Bursztyn et
al. (2023), who build a model with this property), existing work has not examined
the ease or difficulty with which such networks get established. This paper shows
why—perhaps surprisingly—it is easy to establish such networks.> Second, while
networks with the feature 0 > a > b might seem counterintuitive, we show that
they arise naturally in many settings. Rat races make networks bad and also create

pressure to join.*

3The work of Bursztyn et al. (2023) is perhaps the closest paper to ours. They study an environ-
ment with negative spillovers to non-users of a network which can lead to what they call “product
market traps.” In their model, the decentralized (rational expectations) equilibrium need not be
unique nor socially optimal. They point out that the introspective equilibrium solution concept of
Akerlof et al. (2023) permits them to select the bad equilibrium provided there is a large enough
fraction of early adopters who want to use the product even when nobody else is using it. In an
earlier draft of their paper, they also note the possibility that a unique bad equilibrium might exist.
We see the main contribution of our paper as making clear why “bad networks” can get estab-
lished easily. Relative to Bursztyn et al. (2023), we formalize the conditions under which a unique
bad equilibrium arises, and microfound the reason why network externalities exist. Bursztyn et al.
(2023) are less focused on the question of why it is easy for bad networks to get established and the
primitives that make the network “bad”.

“The rat race in Section 5 of our paper relates to Tirole (2021) who analyzes a model in which
agents care about their image and choose whether to engage in activity in the public or private
sphere. He finds that social networks move activity, at a cost, from the private sphere into the
public sphere, which is consistent with our microfoundation.



2 An Illustrative Example

Let us begin with an illustrative example. Consider a setting with a unit mass of
agents who simultaneously decide whether to join a network. The utility of agent
i € [0, 1] is given by:

aq, x; =1,
u(z;) = !

where z; = 1 (z; = 0) denotes the decision to join (stay off) the network, and
q € [0, 1] is the fraction of agents who join. Network participation generates exter-
nalities for participants (captured by parameter a) and non-participants (captured
by parameter b). We assume a > b, so that participants benefit more from the net-
work than non-participants. Note that Bursztyn et al. (2023) also allow for such
negative externalities.

We will examine both the case where a > 0 and the case where a < 0. The
case where a < 0 might not seem intuitive. Why would participation in a network
generate negative externalities? However, we see such networks as common. In
Section 5, we provide microfoundations for such networks and convey an intuition
for why they can arise. We argue that, in cases where networks generate rat races—
as tends to be true of social networks—negative externalities are endemic.

To begin our analysis, notice that agents strictly prefer to join the network when
q > 0 and they are indifferent between joining and staying off when ¢ = 0. Thus,
the game has two Nash equilibria: full participation (¢""* = 1) and no participation
(V" =0).

The agents’ aggregate welfare is given by

Wi(q) = (aq)q + (bg)(1 —q)

—_—
benefit to those on the network  benefit to those off the network

We refer to the network as a “good network” if a > 0. It is easy to show that, in
this case, the welfare-maximizing value of ¢, denoted ¢*, is equal to 1. We refer to
the network as a “bad network” if a < 0. In this case, ¢* = 0. Intuitively, when
participation generates positive spillovers (a > 0), aggregate welfare rises as more
agents join the network—whereas negative spillovers (a < 0) make participation
socially harmful.



There are many prominent examples of networks that impose relatively small
costs to those off the network and have considerable benefits for those on it. These
might include services like Google Search, Spotify recommendations, or Tesla Au-
topark, where each additional user improves the underlying algorithm for every-
one. Such networks are ones that we would see as “good.” Social media, on the
other hand, is a potential example of a bad network. These platforms can generate
a “rat race” of social comparison that is welfare-reducing for participants (a < 0),
while the experience for non-participants is made even worse by social exclusion
(b < a). As we will discuss further in Section 5, this creates the very conditions for
a bad network to thrive.

Putting the above findings together, we conclude that the following types of
outcomes are possible.

Good outcomes:
1. Full participation on a good network (¢"* = ¢* = 1) can occur when a > 0.
2. No participation on a bad network (¢"'¥ = ¢* = 0) can occur when a < 0.
Bad outcomes:

1. No participation on a good network (¢ = 0 and ¢* = 1) can occur when
a > 0.

2. Full participation on a bad network (¢ = 1 and ¢* = 0) can occur when
a < 0.

The first type of bad outcome—no participation on a good network—is a well-
understood coordination failure, in which agents fail to realize mutual gains from
participation.

In contrast, the second type of bad outcome—full participation on a bad network—
has received relatively little attention. This second failure can occur when a < 0;
however, in that case, a good outcome—no participation on a bad network—also
remains possible. This raises a key question: when a < 0, which outcome is more
likely to prevail—the good or the bad?

In the next section, we generalize our analysis to better understand the circum-

stances where bad outcomes prevail. One might think that bad networks would be



difficult to establish, even if they are technically possible. Why would people join
a network they strongly dislike? Yet, perhaps counterintuitively, such networks
can form quite easily—much like parties that no one wants to attend but feel com-

pelled to join once others start going.

3 Participation in Good and Bad Networks

To generalize the example, assume that the utility of agent ¢ € [0, 1] is given by:
i) = (1)
(p .

where ¢(0) = 0, (1) = 1, and ¢(q) is strictly increasing, twice differentiable, and
weakly concave.’ The ¢;’s are distributed according to a unimodal p.d.f. f(-) with
support [—c, |, where ¢ € R U {zxoo}. For ease of exposition, we assume that f
is symmetric about 0 and atomless.® We again assume that « > b.” Notice that
the example from Section 2 corresponds to the case where ¢ = 0 and ¢(q) = ¢.
In Section 5 we provide an explicit microfoundation for preferences of the form
given in equation (1) (see Proposition 4).

To solve for the Nash equilibria of the game, notice that agent ¢ prefers to join
the network if and only if ¢, > (b— a)¢(q). Thus, in equilibrium, the mass of agents
who join the network must be equal to P(¢; > (b — a)p(q)) = 1 — F((b — a)e(q)),
where F'is the c.d.f. of f. Hence, the Nash equilibrium must solve the following
equation:

¢VF =1 - F((b— a)p(¢"")) )

When ¢ = 0, there are multiple Nash equilibria. However, when ¢ > 0 (in the
spirit of a trembling-hand refinement), there is a unique Nash equilibrium with

¢"F > 1.2 We state this formally in the following lemma.

Taking (1) = 1 is without loss of generality since we can always rescale a and b. It is natural
to assume that social networks have concave network externalities. While early adopters may
bring substantial value to the network, network congestion, competition for attention, and over-
saturation tend to reduce the marginal value of participation as network size increases.

® Atomic distributions over e; are easily accommodated and yield even sharper results.

"The case where a < b— although not of much economic interest—is easily handled and leads
to similar types of inefficiency.

8We thank an anonymous referee for pointing out the similarity between our approach and
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Lemma 1. For all ¢ > 0 there is a unique equilibrium. In this equilibrium, ¢™% > 1.

To understand the intuition behind this result, let us refer to agents with ¢; > 0
as “instigators,” agents with ¢; < 0 as “resistors,” and agents with ¢, = 0 as “neu-
tral agents.”” We can interpret these groups through the lens of the microfounda-
tion we develop in Section 5. If agents have heterogeneous preferences over social
comparison, “instigators” (¢; > 0) correspond to agents who derive high intrin-
sic utility from visibility and status seeking—for example, influencers who benefit
from the “rat race” of esteem even before the network is large. Conversely, “resis-
tors” (¢; < 0) might be individuals who are averse to social comparison or privacy
risks. Resistors only join the network once the mass of peers (¢) becomes suffi-
ciently large that the benefit of social connection outweighs their intrinsic distaste
for the platform. When ¢ = 0, all agents are neutral; but when ¢ > 0, there are a
combination of instigators and resistors (plus a zero-mass of neutral agents).

Notice that if no agents are on the network initially (¢ = 0), all of the instigators
will join. These instigators make up half of the population; thus, ¢ rises to ¢; =
1. When ¢ increases to ¢;, some resistors will also join, causing ¢ to rise further:
to ¢ > ¢;. When ¢ increases to ¢,, yet more agents will join. The unique Nash
equilibrium corresponds to the limit of this process: ¢V = lim,,_,. ¢, (see Figure 1
for an illustration).!”

Agents’ idiosyncratic benefits/costs (¢;) have an impact on the welfare analysis.
Letting €(q) = F~1(1 — q), aggregate welfare is given by:!!

W(q) = (a —b)ay(q) + bp(q) + E(e: & > &q)). ©)

Let ¢* denote the value of ¢ that maximizes aggregate welfare. As in the illustrative
example, when ¢ = 0, so thate; = O forall, ¢* =0ifa < Oand ¢* = 1ifa > 0.
However, ¢* might take a value between 0 and 1 if ¢ > 0. For instance, suppose
there is one set of agents with ¢, large and positive and a second set with ¢; large

trembling-hand equilibrium.

The term instigator is used by Granovetter (1978) to describe agents who have a “0% threshold”
for taking an action—that is, agents who are willing to join a network in the absence of anyone else
joining.

'Note that if consumers not only have heterogeneous preferences over joining the network (e;)
but the network externalities (¢ and b) are also heterogeneous across consumers, there might be
multiple equilibria.

""The notation E(e;: €; > €) is equivalent to E(e; 1, >¢(q)}) Where 1 is an indicator function.
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Figure 1: Starting from ¢ = 0, all instigators join the network, taking us to ¢; = 3.
Because a > b, this induces some resistors to join the network, taking us to ¢, and
so on until we reach the unique solution ¢™* of equation (2).

and negative. It might be optimal to have the first set join the network and the
second set stay off the network.

As before, we will use the terms “good network” and “bad network” to refer,
respectively, to networks that exhibit positive externalities (¢ > 0) and negative
externalities (a < 0). The following proposition compares the equilibrium level of
network participation to the socially optimal level for good and bad networks.

Proposition 1.

1. For good networks (a > 0), too few agents join the network relative to the social
optimum (¢NE < ¢*).

2. For bad networks (a < 0), too many agents join relative to the social optimum (¢* <

qNE)'

Intuitively, instigators get a bad network started. Other agents then join the
bad network—even though they dislike it—because it is even worse to be off the
network (b < a). It is like a party that people find unpleasant but feel obliged to
attend. As people join the network, they both make the network more unpleasant
and increase the pressure to join. That is, they make it a party where attendance
is more obligatory. This externality leads to suboptimally high rates of network

participation. This effect also generates the following result.



Lemma 2. For bad networks (a < 0), there is a positive mass of agents on the network
who would be better off if the network did not exist.

Proposition 1 shows that, for all bad networks, too many agents join relative
to the social optimum. An extreme case—that can arise—is one where all agents
join the network even though it is optimal to have no agents join. The following

proposition provides conditions under which we see this outcome.
Proposition 2.
1. If ¢ < a — b, all agents join the network in equilibrium (g™ = 1).

2. If ¢ < —a, all agents are better off if there is no network (¢ = 0) than if there is a
network (q > 0). This implies, moreover, that ¢* = 0.

Intuitively, for a bad network where c is small, resistors are not too resistant to
joining the network. Thus, when instigators join the network, they create a snow-
ball effect whereby all of the resistors join as well (hence, ¢V¥ = 1). Moreover, for
a bad network where c is small, agents’ idiosyncratic tastes (¢;’s) are not very im-
portant from a welfare standpoint. The negative network externalities associated

with having agents join are the dominant welfare consideration. Thus, ¢* = 0.

Discussion

Propositions 1 and 2 explain why networks which are both socially undesirable
and harmful to users can nonetheless sustain large amounts of participation in
equilibrium. Such “bad networks” are remarkably easy to get going: even if in-
stigators are not very inclined to join (i.e., even if c is very low) they can trigger a
cascade in which the pressure to join overwhelms any idiosyncratic dislike for the
network. In the extreme, all agents may join the network and yet prefer that it did
not exist.

Our findings are supported by empirical evidence. Bursztyn et al. (2023) report
that the average student prefers to be on TikTok. They would need to be paid 59
dollars to get off of it for four weeks. However, they would be willing to pay 28
dollars to have TikTok deactivated for everyone. In this sense, these students are
miscoordinated— trapped on a bad network (in line with Lemma 2).

Internal company research at Meta points to the same conclusion. As reported

in the Wells et al. (2021) coverage of the “Facebook Papers,” Meta’s own analyses
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acknowledged that Instagram worsens body image issues for one in three teenage
girls and that users themselves blamed the platform for increases in anxiety and
depression. In our framework, this is a real-world instance of a bad network:
widespread participation persists despite evidence of harm to many users. In Sec-
tion 5, we demonstrate that social media platforms have incentives to exacerbate

the harmful effects of their networks.

4 Policy

Of course, there are tools for correcting market failures.!'? It is natural to consider
Pigouvian taxation as a potential remedy since the inefficiencies in the market arise
due to externalities.”> Here, we show that Pigouvian taxation may restore effi-
ciency; however there are cases where it does not work.

Let 7 denote the tax each agent pays when they join the network. Agent i’s
utility becomes:

Aggregate welfare is given by:

1
W™(q,7) = / widi + q-T
i=0 ~~~
N—— tax revenue
agents’ utility
A Pigouvian tax charges each agent based on the marginal externality they in-
flict:
7(¢) = —(ag +b(1 — q))¢'(q)

Suppose that, before agents choose whether to join the network, a social planner
announces that the tax on the network will be 77(¢*), where ¢* is the socially opti-

12There are also tools for addressing market failures arising from behavioral biases (e.g., see Bern-
heim and Taubinsky (2018)). Although we focus on purely rational agents, it would be an interest-
ing question for future research to investigate the implications of an extension of our model which
accounts for well-known behavioral biases or irrationalities.

3In this section we focus on bad networks, but the optimal policy for good networks mir-
rors Proposition 3 but with subsidies rather than taxes.
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mal level of network participation.’* Does this tax maximize aggregate welfare?'
Proposition 3 gives conditions under which the Pigouvian tax induces the welfare-

maximizing outcome ¢*.

Proposition 3. Consider a bad network (0 > a > b) where ¢(q) = g and a Pigouvian tax
77 (q*) is imposed. There is a unique equilibrium outcome and it is welfare-maximizing
(q=q")

More generally, imposing a Pigouvian tax guarantees the existence of an equi-
librium that is welfare maximizing (¢ = ¢*); but this equilibrium may not be
unique. Thus, when ¢(q) # ¢, it is not guaranteed that a Pigouvian tax will re-
store efficiency. The following example illustrates.

4.1 An Example: Where Pigouvian Taxes Fail.

Let us consider an example of a case where the Pigouvian tax does not restore
efficiency. For simplicity, we focus on an example where the population consists of
just two types: a mass of 0.2 instigators (/) and 0.8 resistors (R). Take utility to be

where instigators receive idiosyncratic utility ¢; = 3 from joining the network, and
resistors receive disutility ez = —2.5. Thus, in this example, ¢(¢) = ¢* a = -2,
and, b = —7.1°

Since ¢; > 0 and a > b, instigators strictly prefer to join the network at all levels

of ¢. On the other hand, resistors prefer to join the network when
—-2¢° —2.5> =7¢" <= ¢>V05~07.

It follows that when only instigators are on the network, resistors prefer not to join.
However, if enough resistors join the network, resistors all prefer to join. Hence

141f ¢* = 0 it is without loss of generality to set 7(¢*) = 400, which one can think of as “banning
the network.”

1>We thank the editor for highlighting the implications of our model for optimal taxation.

16 Although we take ¢(gq) to be concave in Section 3, for illustrative purposes we use a convex ¢
here.
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there are exactly two Nash equilibria:
¥ =02, and ¢}¥ =1
From the Planner’s perspective, welfare is given by

—(7—5¢)¢* + 3q, q<0.2

W(q) =
—(7-59)¢* + 1.1 — 2.5, ¢ >0.2.

It is easily shown that welfare is increasing on [0,0.2) decreasing on (0.2,1]. It
follows that the welfare-maximizing quantity is for only the instigators to join the
network: ¢* = 0.2.

Now, suppose that agents have coordinated on the largest equilibrium ¢}* = 1.
What is the effect of the Pigouvian tax 77 (¢*) at this quantity? Since ¢/(q) = 2q, we
have

77(0.2) = —(a-0.2 +b(1 — 0.2))¢'(0.2) = 2.4.

We now show that this tax is not enough to get resistors to leave the network.
To see this, note that once the tax is imposed, resistors’ utility from joining the
network becomes —2¢ — 2.5 — 77(0.2) = —2¢* — 4.9. Hence resistors prefer to join
whenever

—2¢° =49 > —7¢" < ¢ > V0.98 ~0.99.

In other words, when ¢ = 1, resistors prefer to stay on the network, even when
subject to the Pigouvian tax. The tax required to deter resistors from joining when
g = lisinfactany 7 > 2.5.

Intuitively, the Pigouvian tax is calibrated to the marginal externality that a sin-
gle agent imposes on others at a given network size. But the bad equilibrium at
(¢ = 1) is sustained by strong strategic complementarities: when almost everyone
is on the network, each resistor compares “being on the bad network with every-
one else” to “being off the bad network while everyone else stays,” and the latter
looks even worse. A small tax that makes each individual internalize her marginal
impact is not enough to overturn that comparison, because any one resistor who
deviates has essentially no effect on the aggregate (¢). To move the economy from
the high-participation equilibrium (¢y” = 1) toward the lower-participation out-

come, many resistors would need to leave at once—but none of them internalizes
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the benefit their collective exit would create.

This limitation of marginal taxation aligns with equilibrium-selection results
in the broader coordination literature. Akerlof et al. (2023) show that when de-
mand is S-shaped, an economy can get stuck in a high-adoption state (like our
bad network) unless a discrete “impulse” pushes demand past a tipping thresh-
old. Similarly, Halaburda and Yehezkel (2019) demonstrate that when a platform
enjoys a “focality advantage,” a standard price adjustment may be insufficient to
shift coordination; instead, a sufficiently large price gap is required to overcome
the focal equilibrium. In our setting, the Pigouvian tax corrects the price at the
margin, but fails to create the discrete utility wedge needed to tip resistors away
from the bad equilibrium.

As a consequence, a moderate, “marginal” tax can restore efficiency locally (it
would prevent further expansion of the network if we started near the efficient
outcome), but once the economy is stuck in the large bad equilibrium it may not
be strong enough to dislodge it. Achieving the socially preferred outcome may
require a more extreme policy—a tax high enough to destroy the bad equilibrium
altogether, or an outright ban on the network—rather than merely correcting the
marginal externality at the existing network size."”

Finally, this logic connects to recent policy debates regarding bans versus taxa-
tion. In the context of digital advertising, Acemoglu and Johnson (2024) argue that
the industry is “locked into a bad equilibrium” in which platforms are incentivised
to garner engagement through whatever means necessary in order to generate ad
revenue. To remedy this, they propose a significant tax on ad revenue to force a
shift to other business models (e.g. subscription). This aligns with our finding that
dislodging a bad network may require a large intervention rather than a marginal
price correction.

When taxation is difficult to implement, our model suggests that quantity reg-
ulations can serve a similar function. Consider, for example, Australia’s recent
legislation to ban social media for users under 16—a demographic for which levy-

ing taxes would be politically challenging. If we consider social media adoption as

7This suggests that optimal policy in these settings may need to be dynamic. Consistent with the
“impulse” logic in Akerlof et al. (2023) or the dynamic pricing analysis in Halaburda and Yehezkel
(2019), a planner might first need to impose a temporary, extreme tax (greater than 7%) to “kill” a
bad focal equilibrium. Once the economy has tipped into the efficient basin of attraction, the tax
can be adjusted to the standard Pigouvian level to maintain optimality.
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a game among peers, status-seeking early adopters act as “instigators.” They gen-
erate a critical mass that drags the broader population of resistors into the network
through fear of social exclusion. By preventing these instigators from joining the
network, the policy removes the impulse required to tip the local peer network into
an inefficient, high-participation equilibrium. Thus, targeted bans can be viewed

as a mechanism to resolve coordination failures.

5 When are Social Networks Bad?

In Section 3, we showed that networks get going easily when networks are bad
(0 > a > b)—perhaps contrary to intuition. A remaining question is whether there
are networks, such as social networks, that are prone towards being bad.

Here, we discuss a force that we see as important in making networks bad: rat
races. Many networks generate competition between agents. Social networks, for
instance, tend to generate competition by making users more aware of how they
compare to one another. Agents may join the network because they feel the need
to participate in the competition; however they may prefer to have no network, so
the competition can be avoided. Here, we provide microfoundations for this idea,
focusing on the case of social networks. We also show why it may be in the interest

of platforms to promote competition—despite its negative consequences.

5.1 Model

Suppose there is a unit mass of agents and each decides whether to join a social
network (z; = 0 or 1) and whether to exert effort (e; = 0 or 1). The effort the agent
exerts is part of a zero-sum competition for esteem. We denote the agent’s outcome
in the esteem competition by R; € [—1, 1] and refer to R; as the agent’s rank, where
1 denotes the highest rank and —1 denotes the lowest rank.

An agent’s rank is determined by a combination of effort and luck (we assume,
for simplicity, that agents have the same ability). Let ¢. denote the fraction of
agents who exert effort. We assume that the expected rank of an agent ¢ who exerts
effort e; is R(e;, ¢.) = e; — ¢.. This assumption ensures that the esteem competition

is zero-sum: for any g, fol R(e;, qe) di = 0.'8

18We do not need, for our purposes, to pin down the exact distributions over ranks.
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Agent 1 is risk neutral and has a utility function which depends on the fraction
of agents who exert effort (¢.) and the fraction of agents on the network (g, ):

U(xi76i’QE’Q$) :£1+al‘i)R(617Qel + /qu * Xy - Cez +Ei * X (4)
Esteem Component Connection Component  Cost of Effort

The first component—the “esteem component”—captures the agent’s concern about
their rank (i.e. how they compare to others). The weight agents put on esteem
depends upon whether they are on or off the social network. Parameter o« > 0
denotes the additional weight agents put on esteem when they are on the net-
work. This captures the idea that social networks make self-comparisons more
salient.'??0

The second component—the “connection component”—reflects the benefit agents
on the network obtain from being able to connect with peers. We assume 3 > 0.

The third component of the utility function is the cost of exerting effort. We
assume that C' > 1, which ensures that agents who do not join the social network
(x; = 0) do not find it worthwhile to exert effort. This is a simple way of capturing
the idea that agents who are off the network are less motivated to participate in the
rat race for esteem.

The final component (¢;) is agent i’s idiosyncratic preference for joining the net-

work.

5.2 Analysis

We separate our analysis into the case where esteem has low salience for agents on
the network (o < C' — 1) and the case where it has high salience (o > C' —1).

Case 1: Esteem has low salience on the network (o« < C — 1)

When « is low, for agents on the network, the returns to effort (1+«), do not exceed

YIn related theoretical work, Iyer and Katona (2016) consider a setting where intensifying com-
petition among users for visibility can have negative effects on their welfare.

20Tt might be natural to assume that the salience of comparisons () is growing with the size of
the network (¢,) as well. Our model easily accommodates this consideration, however it intro-
duces an additional component in the payoff from joining the network. The resulting model can
have multiple Nash equilibria, but qualitatively our results remain the same as every one of these
equilibria is inefficient, so for simplicity we focus on a fixed increase in the size of salience, which
induces a unique equilibrium.
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the cost of effort (C), so e; = 0. Similarly, for agents off the network, the returns to
effort (1) do not exceed the cost (C), so e; = 0. It follows that g, = 0 (e; = 0 for all 7)
and R; = 0 for all i. Thus, the expected utility of agent 7 is given by:

E(U;) = (14 a-zi)Ri(ei qe) + 8- o2 —C e+ € - x5
=0 G vit€-

We can rewrite the expected utility function as follows:

B'Qx_‘_ei) xizla
E(Uz) = )
O, xT; = 0,

This corresponds to the model in Section 3 with a = 8 > 0, b =0, and ¢(q) = q.

Notice that this network is a “good network”: a > 0 and a > b. Intuitively, the
network does not generate a rat race so its only function (connecting peers) is a
positive one.

Case 2: Esteem has high salience on the network (o« > C' — 1)

When « is high, for agents on the network, the returns to effort (1 + «), exceed
the cost of effort (C'), so e; = 1. For agents off the network, the returns to effort
(1) do not exceed the cost (C), so e; = 0. It follows that ¢. = ¢,, ¢, = z;, and
R, = e; — ¢ = x; — q,. Thus, the expected utility of agent i is given by:

E(Ui) =1+ z)Ri(€,¢) + B¢ —C e+ €
=(1+a 2)(@i—q)+B ¢ 2—C-zite€-

We can rewrite the expected utility function as follows:

E(U) = B—a—1Dg+(a—(C-1)+¢, x;=1, ©)

—(x, T, = 07

This exactly corresponds to the model in Section 3—witha = f —a —1,b = —1,
and ¢(q) = ¢—provided E((a — (C' — 1)) +¢;) = 0. Itis a “bad network” (0 > a > b)
if, additionally, 8 — 1 < a < . Intuitively, the negative aspect of the network (the

rat race) outweighs the positive aspect of the network (connecting peers).
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To illustrate the distinction between Cases 1 and 2, networks with low salience
of esteem (Case 1) are often functional or utility-based networks, such as Dropbox,
Slack, or older neighborhood listservs, where the primary utility is coordination
or file sharing rather than public image. Conversely, we view typical examples
of networks with high salience of esteem (Case 2) as media-rich social platforms
like Instagram or TikTok. On these platforms, visibility metrics (likes, views, fol-
lower counts) are prominent, driving the competitive “rat race” («) described in
our model.

Finally, without the normalized expectation, equation (6) corresponds to the

model from Section 3 but with an additional constant term.?

The following proposition summarizes.

Proposition 4.

1. If esteem has low salience for network participants (« < C — 1), the network is a
good network.

2. If esteem has high salience for network participants (o« > C — 1), the network is a
bad network if E((a — (C — 1)) +¢) =0and f — 1 < a < .

The salience of esteem o might be a strategic choice variable for a platform.
We might ask how increasing the salience of esteem affects the overall size of the
network (¢,;). From equation (5), we see that when salience is low (o < C' — 1),
increasing salience has no effect on the network’s size.

However, equation (6) shows that when salience is high (o« > C' — 1), agent i’s
desire to join the network is increasing in «. Intuitively, increasing o makes the
rat race more intense, which puts more pressure on agents to join the network and
participate in the rat race. Because we cannot rule out the possibility of multiple
equilibria, we focus on the effect of o in the largest equilibrium. In the largest
equilibrium, increasing salience (o) increases the network size (g,). The following

proposition summarizes.

ZIThe model can easily be modified so that the social network not only reduces agents’ utility
but also their esteem. Suppose agents who stay off the network are able to hold motivated beliefs
about their rank because they lack information about how they compare. We can model this in
simple terms by assuming agent i’s esteem is boosted by ~ if they stay off the network. With this
modification, the network lowers esteem since it prevents agents from holding motivated beliefs.
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Proposition 5.

1. When the salience of esteem is low (o« < C' — 1), raising salience has no effect on

network size (q,,).

2. When the salience of esteem is high (o« > C' — 1), raising salience weakly increases

network size (q,) in the largest equilibrium.

5.3 Social Comparison on Platforms

Proposition 5 suggests that a platform might try to increase the social-comparison
aspects of its network («) as a way of driving participation. There are a variety
of design choices media platforms make that could raise a. Examples include
prominently displaying engagement metrics such as “likes,” shares, and follower
counts, and algorithmic feeds prioritizing content that performs well according to
these metrics. Experimental evidence shows that exposure to “upward compari-
son” (content—profiles depicting more attractive lifestyles, higher social activity,
or healthier habits) lowers users’ self-esteem (see Vogel et al., 2014; Verduyn et al.,
2020, for social comparison in the context of social media). By curating feeds to
highlight such content, platforms make social comparison more salient (increase
a), intensifying the competitive pressures in our model.

Recent empirical work has looked at the trade-off between user welfare and en-
gagement. Beknazar-Yuzbashev et al. (2025) show that reducing toxic content” on
social media significantly lowers time spent and advertising impressions. While
their findings are not about social comparison per se, toxic environments may am-
plify social comparison (for example, through shaming, hostile commentary, or
norm-enforcing harassment). In this sense, we see a relationship—although not
exact—between our model and these findings.

Several high-profile cases suggest that platforms recognize these harms yet pre-
serve these features anyway. In 2019-2021, Instagram ran a global experiment
hiding public “like” counts, with the stated aim “to make it less of a competi-
tion” (Booker, 2019). Independent evidence from Wallace and Buil (2021) and oth-
ers shows that removing visible “likes” reduced negative affect and loneliness,
consistent with lowering a. The change received positive user feedback, but Insta-
gram ultimately made it optional rather than the default—maintaining the com-

petitive pressure that fuels engagement.
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Taken together, the evidence points to a structural misalignment, where fea-

tures that cause widespread harm also make social networks more profitable.

6 Conclusion

There is significant evidence that social networks, despite their popularity, are
harmful to users. In this paper, we ask why such networks arise in the first place,
and what features make them “bad.”

We show that networks with the feature 0 > a > b are not only harmful if
they get established but also get established easily. Effectively, these are parties that
people do not like to attend but feel more and more pressure to attend as others
choose to do so. A few “instigators” is all it takes to get such networks started.

While networks with the feature 0 > a > b might seem counterintuitive, we
argue that they arise naturally in many settings. Rat races make networks bad—
yet they also create pressure to join. We argue that rat races are a pervasive fea-
ture of social networks. Moreover, amplifying the rat-race nature of social net-
works boosts network size which, while harmful to consumers, may benefit the
platforms.

This paper (see Proposition 3) suggests that traditional policies, such as Pigou-
vian taxation, can serve as helpful remedies. However, once networks are es-
tablished, “marginal” policies may be insufficient to induce socially optimal out-

comes.
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7 Appendix: Proofs

7.1 Proof of Proposition 1

To begin, we prove a Lemma.
Lemma 3. Forany q € (0,1),

din(ei ce>F 1 (1—q)=F ' (1-q).

Proof. Letting € = F~'(1 — ¢), we can write

E(c: ¢ > ) :/:ef(e)de.

So we have
de 1 1

dqg [F1—q) @

Hence by Leibniz integral rule,

which completes the proof. O
We now prove the proposition.

Proof. Recall that welfare is given by
W(q) = ap(q)q + bp(q)(1 — q) + E(e; : € > ).
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To begin, suppose a < 0. Then welfare cannot be maximized at 1 since W (0) =
0 > a = W(1). So either welfare is maximized at 0, or welfare is maximized at an
interior point. For now, suppose that the optimum is interior. The first derivative

of welfare is given by

W'(q) = alqe'(q) + (q)) + b((1 — )¢ (q) — (q)) + F~ (1 —q)
= (a—b)p(q) + (ag +b(1 — q))¢'(q) + F (1 —q)

where the F~!(1 — ¢) term comes from Lemma 3.

Now, in any interior equilibrium, equation (2) implies that
(a=b)p(@"") + F7(1-¢"") =0.
So it follows that

W (q"F) = (a = b)e(d"7) + (ag™" + b(1 — ¢"7))' (") + FH(1 = ¢VF)
= (g™ +b(1 — ¢"7))¢' (¢"") (7)
<0,

where the inequality comes from the fact that ¢"* € (0,1) = ¢/(¢"¥) > 0 and
0 > a > bimplies ag + b(1 — ¢) < 0 for all ¢. So in any interior equilibrium, welfare
can be improved by decreasing the number of agents on the network. It remains to
show that there cannot be some other “global maximum” of the welfare function
at ¢* > ¢"*. Since the Nash equilibrium is unique, for any ¢ > ¢ we must have
(a —b)p(q) + F~1(1 — q) < 0, and therefore

W'(q) = (a—b)p(q) + F7'(1 = q) + (ag + b(1 - q))'(q) < 0,

. J (.

<0 <0
which shows that the global maximum ¢* to the planner’s problem can never be
larger than ¢¥. Hence if ¢* is interior then ¢* < ¢"¥. Finally, if ¢* = 0 then clearly
the NE is still too large since ¢™* > 0 (in particular, ¢"* > 1). This proves Propo-
sition 1 for bad networks.

Now suppose a > b > 0 so the network is good. Then by exactly the same
reasoning, the slope of welfare at the NE is given by equation (7), which, for a,b > 0
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is strictly positive. Moreover, since (a — b)¢(q) > F~!(1 — q) for ¢ < ¢ it follows
that the smallest solution to the planner’s problem must be larger than ¢"'*, since

in particular

(a—b)p(q) + (ag+ b(1 — q))¢'(q) > (a —b)p(q) > —F (1 —q).

That is, W’(q) > 0 for ¢ < ¢"F. Hence the welfare maximizing quantity is always

larger than ¢™*, which completes the proof of the proposition. O

7.2 Proof of Lemma 2

Proof. The Lemma is immediate from the argument preceding Lemma 1. In par-
1

27
€; < 0 who joins the network is strictly worse off than if the network never existed.

ticular, since ¢"¥ > 7, but the mass of agents with ¢; > 0 is 3, any agent with
These agents receive a strictly negative payoff in equilibrium but would receive 0
if g = 0. [

7.3 Proof of Proposition 2
We begin by proving part 1. of the proposition.

Proof. As argued in the text of Section 3 and depicted in Figure 1, strictly more than
+ of all agents must join the network in any NE. This is because it is a dominant
strategy to join for all agents with ¢; > 0, which leads at least some agents with
€; < 0 to join. Note that the equilibrium condition can be written as

(a=b)p(q"") = —F~'(1 —¢""). (8)

Since F(1 — ¢"F) < F7'(3) = 0, (as f is symmetrically distributed around 0),

it follows that at any ¢ satisfying equation (8), the RHS —F~!(1 — ¢"F) is strictly

positive. But for ¢ > 3 the RHS is also strictly convex. Indeed, it is easily shown

that
& ' -4q)

et TS E g
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So for any ¢ > i, wehave F"}(1 —¢q) <0 = f/(F'(1-gq) > 0, and the

denominator is always positive, thus we conclude —%F (1 —=¢) > 0. On the
other hand, the LHS (a — b)¢(¢"¥) is weakly concave by assumption, and ¢(0) = 0.

Taken together, this implies that there is a unique equilibrium— a weakly concave
1

29
either there is an intersection at a point strictly less than 1, or else —F~!(0) = ¢ <

and strictly convex function on [3,1] can have at most one intersection. Hence

(a — b), in which case the unique equilibrium is ¢"* = 1, which proves part 1.
of Proposition 2. O

Before we prove part 2. of the proposition, it is convenient to prove the follow-

ing Lemma.

Lemma 4. Forall ¢ € [0,1],
E(ei: 6 > F 11— q)) < «. )

Proof. For notational simplicity, let ¢, = F~'(1 — ¢) and define

We now prove part 2. of the proposition.

Proof. First, since ¢ is concave with ¢(0) = 0 and (1) = 1, observe that we have

the elementary bounds
¢<¢plg) <L (10)

Using the lower bound and the fact that a, b < 0, we have

ap(q)q + bp(q)(1 — q) < ag® +bg(1 — q) = (a — b)¢* + bg. (11)
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Combining equation (11) with Lemma 4 gives
W(q) < (a—b)q" +bg + cq.
Since ¢ < —a, we have

W(q) < (a—b)¢* +bg — aq
= —(a—"b)q(1—q).

This proves that W (q) < 0 for all ¢ € (0,1). Finally, W(1) = a < 0, hence W(q) < 0
for all ¢ > 0 and so ¢* = 0 is uniquely optimal for the planner. Since an agent
with the largest possible idiosyncratic benefit ¢ from joining the network receives
—a + ¢ < 0 in the Nash equilibrium, it follows that all agents are worse off on the

network in equilibrium. O

7.4 Proof of Proposition 3

Proof. Define
B(q) = (a—b)g+ F (1 —q),

With ¢(¢) = ¢ and a constant tax 7, agent 7 joins the network if
6= (b—a)g+T,
hence the equilibrium condition is
g=1—F((b—a)g+7),

which is equivalent to B(q) = 7. Suppose the planner’s optimal participation

¢* € (0,1) is interior. Then the constant (Pigouvian) tax is given by

™ =71"(¢") = —(ag"+b(1—g")) > 0.
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Step 1 (Quantile-tail identity and concavity). Define
H(q) = Elg: e, > F (1 —¢q)] = / z f(x)dx.

We know from lemma 3 that

Hq)=F"'1-q, H'(q=-

so H is strictly concave on (0, 1).
With ¢(q) = ¢, welfare is

W(q) = (a—b)¢*+bq+ H(q).

Recall that the planner’s optimum can never be ¢* = 1, sincea = W(1) < W(0) = 0.
Moreover, if the planner’s optimum is ¢* = 0, the optimal policy bans the network,
7" = +o00, and the unique equilibrium is ¢ = 0, so the result is immediate. Hence-
forth assume ¢* € (0,1). Then the first-order condition (FOC) is

W) =0 <= 2a—-0bq¢ +b+ H(q*)=0. (12)

Step 2 (Equilibrium at the optimal tax). Under the Pigouvian tax 7%, the equi-
librium condition for any ¢ € (0,1) is B(q) = 7*. Since 7* = B(q*), this implies

(a=b)g+ H'(q) = (a—=b)g"+ H'(q"). (13)
Combining (13) with the FOC (12) yields the identity
(a=b)g+q)+H(g+b =0, (14)

which holds for every equilibrium g.

Step 3 (Strict concavity gives a strict lower bound on W (q) — W (g*)). Suppose
for a contradiction that ¢ # ¢* is an equilibrium under the tax 7* (i.e. ¢ satis-

ties (13)). By strict concavity of H,
H(q) = H(q") > H'(q) (¢ —q").
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Therefore

W(g)—W(g") = (a=b)(F—q?) +blg—q") + (H(q) — H(q"))
(?—q?)+b(g—q)+H(q) (¢ —q)
— (a—a")[(a=b)la+q") +b+ H(qg)

= O’
where the final equality follows from (14). Hence
W(g) = Wla") > 0,

which contradicts the optimality of ¢* for the planner. Therefore no ¢ # ¢* can
solve (13), i.e. B(q) = 7 admits the unique solution ¢ = ¢*. ]

7.5 Proof of Proposition 4

Proof. Proposition 4 is proved in the text of Section 5. O

7.6 Proof of Proposition 5

Proof. First, suppose a < C — 1. Then by equation (5), utility does not depend
on a. Hence raising the salience has no effect on incentives, and therefore on the
network size ¢,.

Now suppose o > C' — 1. Then by equation (6), agent i joins the network when

€ > —B¢ —a(l —gq)+C—1

Since the RHS is strictly decreasing in «, the probability P(e; > —8¢, — a(1 — ¢,) +
C — 1) is weakly increasing in «. Hence the largest intersection of the line ¢, with
P(e; > —Bqy — a(l — ¢q,) + C — 1) is also weakly increasing in a. Therefore, the
largest equilibrium network size ¢, (which is defined by the largest solution to
¢ = P(e; > —f¢, — a(1 — q,) + C — 1)) is weakly increasing in ¢, as claimed. [
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