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Abstract

There is increasing evidence that social media is detrimental to mental
health and self-esteem. A puzzle is why, in spite of this, people join these plat-
forms. One possibility is that people feel trapped: they dislike these networks—
in particular, the way in which they encourage self-comparison—but they
need to be on them to socialize with peers. We refer to networks where people
feel trapped as “bad networks.” We model settings with network externalities
and show that, surprisingly, bad networks are easy to establish. We also show
that networks tend to be both bad and easy to establish when they create rat
races—as social networks often do. Amplifying the rat race boosts network

size which, while harmful to consumers, may benefit the platform.
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1 Introduction

The harmful effects of social media are becoming increasingly hard to ignore. In his
recent book, The Anxious Generation, Jonathan Haidt argues that social media usage
is fueling a mental health crisis among young people. Since 2010, rates of major
depression among teens have risen by more than 150 percent, and the share of 8th,
10th, and 12th graders who report being satisfied with themselves has dropped
by roughly 10 percentage points.! This decline in mental health began precisely
when smartphones became widely adopted. Haidt illustrates the crisis through
the story of Alexis, who joined Instagram at age 11. At first, she was thrilled,
writing in her journal: “On Instagram I reach 127 followers. Ya! Let’s put it this
way, if I was happy and excited for 10 followers then this is just AMAZING!!!!”
But her enthusiasm quickly faded. Her feed soon filled with images of models,
dieting advice, and eventually pro-anorexia content promoted by the platform’s
algorithms. By eighth grade, she was hospitalized for anorexia and depression—
struggles that continued throughout her teenage years.

While much of Haidt’s evidence is correlational, there is growing causal evi-
dence linking social media to mental health declines. For example, Braghieri et al.
(2022) exploit the staggered rollout of Facebook across U.S. college campuses to
show that access to the platform increased symptoms of poor mental health, par-
ticularly depression. Further evidence on mechanisms suggests these effects stem
from Facebook’s tendency to foster negative self-comparisons among users.

If social media has such deleterious effects, it raises the question: why are peo-
ple using these platforms? One answer is that social media may be addictive.
Addiction researcher Anna Lembke embraces this view, writing in Dopamine Na-
tion, “the smartphone is the modern day hypodermic needle, delivering digital
dopamine 24/7 for a wired generation.”? Supporting this perspective, Allcott et
al. (2022) provide causal evidence from a field experiment suggesting that addic-
tion accounts for roughly 31% of social media use. They find that usage drops
significantly when users can set limits on their future screen time.

However, another important aspect may be that people feel trapped: they dislike

these platforms but need to be on them to socialize with their peers. According to

The first statistic is based on data from the U.S. National Survey on Drug Use and Health; the
second comes from the Monitoring the Future survey (see Haidt (2024)).
2See Lembke (2021), p.1.



this story, people are miscoordinated: they would be better off if they could social-
ize in another way, but no individual has the power to make that change. Parents
seem to perceive this dilemma. As Jonathan Haidt puts it, “Most parents don’t
want their children to have a phone-based childhood, but somehow the world has
reconfigured itself so that any parent who resists is condemning their children to
social isolation.” A recent survey of college students by Bursztyn et al. (2023) pro-
vides more concrete evidence. They find that the average student would need to
be paid 59 dollars to get off of TikTok for four weeks. By contrast, the average
student would pay 28 dollars to have TikTok deactivated for everyone.

We refer to a network as “bad” if it is welfare-reducing (along the lines of the
“trapped” story). This paper has two aims. First, we analyze why bad networks
arise. One might imagine that such networks are hard to establish—even when
they are technically feasible. Why would people flock to a network that they in-
tensely dislike—absent some form of irrationality? We show, perhaps contrary to
intuition, that bad networks can get started easily—like parties that people do not
wish to attend but feel obligated to when others are going. The second aim of this
paper is to identify the features that make networks both bad and easy to estab-
lish. We show that this occurs when networks generate rat races—as many social
networks do.

This paper is organized as follows. Section 2 provides an illustrative example
that demonstrates the idea of a bad network, where a large number of agents join
a network even though this is welfare-reducing.

Section 3 generalizes this example. It considers a setting where agents face net-
work externalities whether they join a network (parameterized by a) or stay off
(parameterized by b). We allow a and b to take arbitrary values. The interesting
case arises when 0 > a > b: the network is unpleasant for those who are on it, but
even more unpleasant for those who are off it. “Instigators” get these networks
established. These instigators then put pressure on other agents to join, creating a
snowball effect. Because agents do not internalize the externalities they inflict—in
particular, the pressure they put on other agents to join—these networks grow to
suboptimally large sizes (¢¥ > ¢*). We also consider potential remedies, such
as Pigouvian taxes. While “marginal” policies may be sufficient to induce the so-
cially optimal outcome, more extreme policies are potentially needed to dislodge
established networks.



Section 4 then asks whether there are networks with the property that 0 > a > 0.
We demonstrate that networks tend to have this feature when they generate rat
races. We provide explicit microfoundations for a social network with this prop-
erty. In the case we consider, agents make two choices: whether to join a social
network and whether to exert effort in a rat race. Agents on the network care more
about the rat race (i.e. how they compare to others) than agents off the network,
which we parameterize by a. We think of « as the extent to which the social net-
work creates concern among agents about social comparison. Networks where o
is large tend to have the property that 0 > a > b. In addition, we show that the size
of the network is increasing in a. Thus, amplifying the rat race may be beneficial
to a platform even if it is harmful to consumers.

Relative to the existing literature, our contribution is twofold. First, while it is
known that agents can miscoordinate on a bad network (see especially Bursztyn et
al. (2023), who build a model with this property), existing work has not examined
the ease or difficulty with which such networks get established. This paper shows
why—perhaps surprisingly—it is easy to establish such networks.? Second, while
networks with the feature 0 > a > b might seem counterintuitive, we show that
they arise naturally in many settings. Rat races make networks bad and also create

pressure to join.*

2 An Illustrative Example

Let us begin with an illustrative example. Consider a setting with a unit mass of

agents who simultaneously decide whether to join a network. The utility of agent

3The contemporaneous work of Bursztyn et al. (2023) is perhaps the closest paper to ours. They
study an environment with negative spillovers to non-users of a network which can lead to what
they call “product market traps.” In their model, the decentralized (rational expectations) equi-
librium need not be unique nor socially optimal. They point out that the introspective equilibrium
solution concept of Akerlof et al. (2023) permits them to select the bad equilibrium provided there
is a large enough fraction of early adopters who want to use the product even when nobody else
is using it. In our (Nash, as opposed to introspective) equilibrium it is an arbitrarily small mass
of instigators that triggers the unraveling to a bad network involving full participation. By con-
trast, Bursztyn et al. (2023) require a “large enough” number of early adopters to reach the bad
introspective equilibrium with everyone on the network.

“The rat race in Section 4 of our paper relates to Tirole (2021) who analyzes a model in which
agents care about their image and choose whether to engage in activity in the public or private
sphere. He finds that social networks move activity, at a cost, from the private sphere into the
public sphere, which is consistent with our microfoundation.



i € [0, 1] is given by:
u(z;) =

where z; = 1 (z; = 0) denotes the decision to join (stay off) the network, and
q € [0,1] is the fraction of agents who join. Network participation generates exter-
nalities for participants (captured by parameter a) and non-participants (captured
by parameter b). We assume a > b, so that participants benefit more from the
network than non-participants.

We will examine both the case where ¢ > 0 and the case where a < 0. The
case where a < 0 might not seem intuitive. Why would participation in a network
generate negative externalities? However, we see such networks as common. In
Section 4, we provide microfoundations for such networks and convey an intuition
for why they can arise. We argue that, in cases where networks generate rat races—
as tends to be true of social networks—negative externalities are endemic.

To begin our analysis, notice that agents strictly prefer to join the network when
g > 0 and they are indifferent between joining and staying off when ¢ = 0. Thus,
the game has two Nash equilibria: full participation (¢# = 1) and no participation
(@™ =0).

The agents” aggregate welfare is given by

W(q) = (ig)_g + (bg)(1 —q)

benefit to those on the network  benefit to those off the network

We refer to the network as a “good network” if a > 0. It is easy to show that, in
this case, the welfare-maximizing value of ¢, denoted ¢*, is equal to 1. We refer to
the network as a “bad network” if a < 0. In this case, ¢* = 0. Intuitively, when
participation generates positive spillovers (a > 0), aggregate welfare rises as more
agents join the network—whereas negative spillovers (a < 0) make participation
socially harmful.

There are many prominent examples of networks that impose relatively small
costs to those off the network and have considerable benefits for those on it. These
might include services like Google Search, Spotify recommendations, or Tesla Au-
topark, where each additional user improves the underlying algorithm for every-
one. Such networks are ones that we would see as “good.” Social media, on the



other hand, is a potential example of a bad network. These platforms can generate
a “rat race” of social comparison that is welfare-reducing for participants (a < 0),
while the experience for non-participants is made even worse by social exclusion
(b < a). As we will discuss further in Section 4, this creates the very conditions for
a bad network to thrive.

Putting the above findings together, we conclude that the following types of

outcomes are possible.

Good outcomes:
1. Full participation on a good network (¢"* = ¢* = 1) can occur when a > 0.
2. No participation on a bad network (¢"¥ = ¢* = 0) can occur when a < 0.
Bad outcomes:

1. No participation on a good network (¢ = 0 and ¢* = 1) can occur when
a > 0.

2. Full participation on a bad network (¢"¥ = 1 and ¢* = 0) can occur when
a < 0.

The first type of bad outcome—no participation on a good network—is a well-
understood coordination failure, in which agents fail to realize mutual gains from
participation.

In contrast, the second type of bad outcome—full participation on a bad network—
has received relatively little attention. This second failure can occur when a < 0;
however, in that case, a good outcome—no participation on a bad network—also
remains possible. This raises a key question: when a < 0, which outcome is more
likely to prevail—the good or the bad?

In the next section, we generalize our analysis to better understand the circum-
stances where bad outcomes prevail. One might think that bad networks would be
difficult to establish, even if they are technically possible. Why would people join
a network they strongly dislike? Yet, perhaps counterintuitively, such networks
can form quite easily—much like parties that no one wants to attend but feel com-

pelled to join once others start going.



3 Participation in Good and Bad Networks

To generalize the example, assume that the utility of agent i € [0, 1] is given by:
w = ' (1)
(p .

where ¢(0) = 0, (1) = 1, and ¢(q) is strictly increasing, twice differentiable, and
weakly concave.” The ¢;’s are distributed according to a unimodal pdf f(-) with
support [—c, c], where ¢ € R. For ease of exposition, we assume that f is symmetric
about 0 and atomless.® We again assume that a > b.” Notice that the example from
Section 2 corresponds to the case where ¢ = 0 and ¢(q) = ¢. In Section 4 we pro-
vide an explicit microfoundation for preferences of the form given in equation (1)
(see Proposition 4).

To solve for the Nash equilibria of the game, notice that agent i prefers to join
the network if and only if ¢, > (b— a)¢(q). Thus, in equilibrium, the mass of agents
who join the network must be equal to P(¢; > (b — a)¢(q)) = 1 — F((b — a)e(q)).
Hence, the Nash equilibrium must solve the following equation:

¢"" =1-F((b-a)p(¢"")) ()

When ¢ = 0, there are multiple Nash equilibria. However, when ¢ > 0 (in the
spirit of a trembling-hand refinement), there is a unique Nash equilibrium with

¢ > 1.5 We state this formally in the following lemma.

Lemma 1. For all ¢ > 0 there is a unique equilibrium. In this equilibrium, ¢"F >

o=

To understand the intuition behind this result, let us refer to agents with ¢; > 0

as “instigators,” agents with ¢; < 0 as “resistors,” and agents with ¢; = 0 as “neutral

>Taking ¢(1) = 1 is without loss of generality since we can always rescale a and b. It is natural
to assume that social networks have concave network externalities. While early adopters may
bring substantial value to the network, network congestion, competition for attention, and over-
saturation tend to reduce the marginal value of participation as network size increases.

® Atomic distributions over e; are easily accommodated and yield even sharper results.

"The case where a < b— although not of much economic interest—is easily handled and leads
to similar types of inefficiency.

8We thank an anonymous referee for pointing out the similarity between our approach and
trembling-hand equilibrium.



agents.”” Instigators are agents who are inclined to join the network when there
are no network participants (¢ = 0), while resistors are agents who are disinclined
to join when there are no participants. When ¢ = 0, all agents are neutral; but
when ¢ > 0, there are a combination of instigators and resistors (plus a zero-mass
of neutral agents).

Notice that if no agents are on the network initially (gy = 0), all of the instigators
will join. These instigators make up half of the population; thus, ¢ rises to ¢; =
1. When ¢ increases to ¢;, some resistors will also join, causing ¢ to rise further:
to g2 > ¢1. When ¢ increases to ¢,, yet more agents will join. The unique Nash
equilibrium corresponds to the limit of this process: ¢V = lim,,_,, g, (see Figure 1

for an illustration).!”

q NE

W1 F(b-a)elq)
uy

7 q2 g3

Figure 1: Starting from ¢ = 0, all instigators join the network, taking us to ¢, = 3.
Because a > b, this induces some resistors to join the network, taking us to ¢, and
so on until we reach the unique solution ¢"* of equation (2).

Agents’ idiosyncratic benefits/costs (¢;) have an impact on the welfare analysis.
Letting €(q) = F~!(1 — ¢), aggregate welfare is given by:"!

W(q) = (a—b)qe(q) +bo(q) + E(e;: e > €(q)). 3)

The term instigator is used by Granovetter (1978) to describe agents who have a “0% threshold”
for taking an action—that is, agents who are willing to join a network in the absence of anyone else
joining.

10Note that if consumers not only have heterogeneous preferences over joining the network (e;)
but the network externalities (a and b) are also heterogeneous across consumers, there might be
multiple equilibria.

"The notation E(e;: €; > €) is equivalent to E(€; 1, >¢(q)}) Where 1 is an indicator function.
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Let ¢* denote the value of ¢ that maximizes aggregate welfare. As in the illustrative
example, when ¢ = 0, so thate; = O foralli, ¢* = 0ifa < Oand ¢* = 1ifa > 0.
However, ¢* might take a value between 0 and 1 if ¢ > 0. For instance, suppose
there is one set of agents with ¢; large and positive and a second set with ¢; large
and negative. It might be optimal to have the first set join the network and the
second set stay off the network.

As before, we will use the terms “good network” and “bad network” to refer,
respectively, to networks that exhibit positive externalities (a > 0) and negative
externalities (a < 0). The following proposition compares the equilibrium level of

network participation to the socially optimal level for good and bad networks.
Proposition 1.

1. For good networks (a > 0), too few agents join the network relative to the social
optimum (¢"F < ¢*).

2. For bad networks (a < 0), too many agents join relative to the social optimum (¢* <

qNE).

Intuitively, instigators get a bad network started. Other agents then join the
bad network—even though they dislike it—because it is even worse to be off the
network (b < a). It is like a party that people find unpleasant but feel obliged to
attend. As people join the network, they both make the network more unpleasant
and increase the pressure to join. That is, they make it a party where attendance
is more obligatory. This externality leads to suboptimally high rates of network
participation. The following corollary naturally follows.

Corollary 1. For bad networks (a < 0), there is a positive mass of agents on the network
who would be better off if the network did not exist.

Proposition 1 shows that, for all bad networks, too many agents join relative
to the social optimum. An extreme case—that can arise—is one where all agents
join the network even though it is optimal to have no agents join. The following
proposition provides conditions under which we see this outcome.

Proposition 2.
1. If ¢ < a — b, all agents join the network in equilibrium (g™ = 1).

9



2. If ¢ < —a, all agents are better off if there is no network (¢ = 0) than if there is a
network (¢ > 0). This implies, moreover, that ¢* = 0.

Intuitively, for a bad network where c is small, resistors are not too resistant to
joining the network. Thus, when instigators join the network, they create a snow-
ball effect whereby all of the resistors join as well (hence, ¢"* = 1). Moreover, for
a bad network where c is small, agents” idiosyncratic tastes (¢;’s) are not very im-
portant from a welfare standpoint. The negative network externalities associated

with having agents join are the dominant welfare consideration. Thus, ¢* = 0.

Discussion

Propositions 1 and 2 explain why networks which are both socially undesirable
and harmful to users can nonetheless sustain large amounts of participation in
equilibrium. Such “bad networks” are remarkably easy to get going: even a small
mass of instigators can trigger a cascade in which the pressure to join overwhelms
any idiosyncratic dislike for the network. In the extreme, all agents may join the
network and yet prefer that it did not exist.

Our findings are supported by empirical evidence. Bursztyn et al. (2023) report
that the average student prefers to be on TikTok. They would need to be paid 59
dollars to get off of it for four weeks. However, they would be willing to pay 28
dollars to have TikTok deactivated for everyone. In this sense, these students are
miscoordinated— trapped on a bad network (in line with Corollary 1).

Internal company research at Meta points to the same conclusion. As reported
in the Wells et al. (2021) coverage of the “Facebook Papers,” Meta’s own analyses
acknowledged that Instagram worsens body image issues for one in three teenage
girls and that users themselves blamed the platform for increases in anxiety and
depression. In our framework, this is a real-world instance of a bad network:
widespread participation persists despite evidence of harm to many users. In Sec-
tion 4, we demonstrate that social media platforms have incentives to exacerbate
the harmful effects of their networks.

10



3.1 Policy

Of course, there are tools for correcting market failures.'? It is natural to consider
Pigouvian taxation as a potential remedy since the inefficiencies in the market arise
due to externalities.”” Here, we show that Pigouvian taxation may restore effi-
ciency; however there are cases where it does not work.

Let 7 denote the tax each agent pays when they join the network. Agent i’s

utility becomes:

Aggregate welfare is given by:

1
W™ (q,7) = / wdi + q-T
i=0 N~~~
—~— taxrevenue
agents’ utility
A Pigouvian tax charges each agent based on the marginal externality they in-
flict:

77(q) = —(ag + b(1 — q))¥'(q)

Suppose that, before agents choose whether to join the network, a social planner

announces that the tax on the network will be 77(¢*), where ¢* is the socially opti-

mal level of network participation.”* Does this tax maximize aggregate welfare?'
Proposition 3 gives conditions under which the Pigouvian tax induces the welfare-

maximizing outcome ¢*.

Proposition 3. If o(q) = q, a Pigouvian tax 77 (g*) on a bad network (0 > a > b) induces
the welfare-maximizing outcome q*.

2There are also tools for addressing market failures arising from behavioral biases (e.g., see Bern-
heim and Taubinsky (2018)). Although we focus on purely rational agents, it would be an interest-
ing question for future research to investigate the implications of an extension of our model which
accounts for well-known behavioral biases or irrationalities.

13In this section we focus on bad networks, but the optimal policy for good networks mir-
rors Proposition 3 but with subsidies rather than taxes.

141f ¢* = 0 it is without loss of generality to set 7(¢*) = +o00, which one can think of as “banning
the network.”

1>We thank the editor for highlighting the implications of our model for optimal taxation.
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The Pigouvian tax always induces a Nash equilibrium in which ¢ = ¢*. How-
ever, additional equilibria may also exist, so the Pigouvian tax does not necessarily
guarantee the welfare-maximizing outcome. The proposition shows that the equi-

librium with ¢ = ¢* is unique, though, when ¢(q) = ¢.

Discussion.

There are cases where we cannot rule out the possibility of multiple equilibria. This
can occur, for example, when ¢(q) # ¢ or the distribution of ¢;’s is not unimodal.
In these cases, the Pigouvian tax might induce an equilibrium ¢’ # ¢*.

One possibility is that ¢’ > ¢*. Intuitively, if a bad network has already formed,
the Pigouvian tax—which is only calibrated to influence the marginal consumer
properly—may not be sufficient to kill it. In such an instance, the optimal policy
might involve first imposing an extreme tax (i.e. greater than 77(¢*)) in order to
kill the bad, focal equilibrium; once the network has been depleted, it might then
be optimal to lower the tax to 77(¢*).1

On the flip side, the Pigouvian tax might induce an equilibrium ¢’ < ¢*. Here,
the Pigouvian tax may not be sufficient to establish a network if a network has
not already formed. In such an instance, the optimal policy might involve first
imposing a low tax (i.e. lower than 77(¢*)) in order to encourage the formation of
a network; once the network has formed, it might then be optimal to raise the tax
to 77 (q*).

4 When are Social Networks Bad?

In Section 3, we showed that networks get going easily when networks are bad
(0 > a > b)—perhaps contrary to intuition. A remaining question is whether there
are networks, such as social networks, that are prone towards being bad.

Here, we discuss a force that we see as important in making networks bad: rat
races. Many networks generate competition between agents. Social networks, for
instance, tend to generate competition by making users more aware of how they
compare to one another. Agents may join the network because they feel the need
to participate in the competition; however they may prefer to have no network, so
the competition can be avoided. Here, we provide microfoundations for this idea,

16 A formal analysis of optimal dynamic taxation is beyond our present scope, but we regard it as
a promising direction for future research.
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focusing on the case of social networks. We also show why it may be in the interest
of platforms to promote competition—despite its negative consequences.

41 Model

Suppose there is a unit mass of agents and each decides whether to join a social
network (z; = 0 or 1) and whether to exert effort (e; = 0 or 1). The effort the agent
exerts is part of a zero-sum competition for esteem. We denote the agent’s outcome
in the esteem competition by R, € [—1, 1] and refer to R; as the agent’s rank, where
1 denotes the highest rank and —1 denotes the lowest rank.

An agent’s rank is determined by a combination of effort and luck (we assume,
for simplicity, that agents have the same ability). Let ¢. denote the fraction of
agents who exert effort. We assume that the expected rank of an agent i who exerts
effort e; is R(e;, ¢.) = e; — ¢.. This assumption ensures that the esteem competition
is zero-sum: for any q., fol R(es,qe) di = 0.

Agent 1 is risk neutral and has a utility function which depends on the fraction
of agents who exert effort (¢.) and the fraction of agents on the network (g, ):

U(ifz', €i, e C]:c) = (1 T xi)R(eia Qel + Bz — C-e¢. +€-7; (4)
Esteem Component Connection Component  Cost of Effort

The first component—the “esteem component”—captures the agent’s concern about
their rank (i.e. how they compare to others). The weight agents put on esteem
depends upon whether they are on or off the social network. Parameter o« > 0
denotes the additional weight agents put on esteem when they are on the net-
work. This captures the idea that social networks make self-comparisons more
salient.'8:1?

The second component—the “connection component”—reflects the benefit agents

7We do not need, for our purposes, to pin down the exact distributions over ranks.

18n related theoretical work, Iyer and Katona (2016) consider a setting where intensifying com-
petition among users for visibility can have negative effects on their welfare.

Tt might be natural to assume that the salience of comparisons («) is growing with the size of
the network (¢,) as well. Our model easily accommodates this consideration, however it intro-
duces an additional component in the payoff from joining the network. The resulting model can
have multiple Nash equilibria, but qualitatively our results remain the same as every one of these
equilibria is inefficient, so for simplicity we focus on a fixed increase in the size of salience, which
induces a unique equilibrium.
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on the network obtain from being able to connect with peers. We assume 3 > 0.
The third component of the utility function is the cost of exerting effort. We
assume that C' > 1, which ensures that agents who do not join the social network
(z; = 0) do not find it worthwhile to exert effort. This is a simple way of capturing
the idea that agents who are off the network are less motivated to participate in the
rat race for esteem.
The final component (¢;) is agent i’s idiosyncratic preference for joining the net-

work.

4.2 Analysis

We separate our analysis into the case where esteem has low salience for agents on
the network (o« < C' — 1) and the case where it has high salience (o > C' — 1).
Case 1: Esteem has low salience on the network (o < C' — 1)

When « is low, for agents on the network, the returns to effort (1+«), do not exceed
the cost of effort (C), so e; = 0. Similarly, for agents off the network, the returns to
effort (1) do not exceed the cost (C), so e¢; = 0. It follows that ¢g. = 0 (¢; = 0 for all 7)
and R; = 0 for all 7. Thus, the expected utility of agent 7 is given by:

E(U) = (1+a-z)Ri(ei,qe) +B-qu-vi —C-e; +€ -5
=0 g ity

We can rewrite the expected utility function as follows:

6'qa;+6i7 xizla
O, €T; = O,

This corresponds to the model in Section 3 witha = 8 > 0, b = 0, and ¢(q) = ¢.
Notice that this network is a “good network”: a > 0 and a > b. Intuitively, the
network does not generate a rat race so its only function (connecting peers) is a

positive one.

Case 2: Esteem has high salience on the network (o« > C' — 1)

When « is high, for agents on the network, the returns to effort (1 + «), exceed

the cost of effort (C'), so e; = 1. For agents off the network, the returns to effort

14



(1) do not exceed the cost (C), so e, = 0. It follows that ¢. = ¢,, ¢; = z;, and
R, = e; — ¢, = v; — q,. Thus, the expected utility of agent i is given by:

E(U;) = (1+a-z)Ri(ei,qe) + B qu-1i —C-e; + 6 -4
=(l+a-z)(@—q)+8 ¢ v—C xi+6

We can rewrite the expected utility function as follows:

gy =P e Vet (C-1)ta &=L ©)
G z; =0,

This exactly corresponds to the model in Section 3—witha = —a —1,b = —1,
and ¢(q) = ¢—provided E((a — (C'—1)) +¢;) = 0. It is a “bad network” (0 > a > b)
if, additionally, 8 — 1 < a < . Intuitively, the negative aspect of the network (the
rat race) outweighs the positive aspect of the network (connecting peers). Without
the normalized expectation, equation (6) corresponds to the model from Section 3
but with an additional constant term.?

The following proposition summarizes.

Proposition 4.

1. If esteem has low salience for network participants (« < C' — 1), the network is a
good network.

2. If esteem has high salience for network participants (« > C — 1), the network is a
bad network if E((a — (C — 1)) +¢)=0and f — 1 < a < .

The salience of esteem o might be a strategic choice variable for a platform.
We might ask how increasing the salience of esteem affects the overall size of the
network (g;). From equation (5), we see that when salience is low (o < C' — 1),

increasing salience has no effect on the network’s size.

2The model can easily be modified so that the social network not only reduces agents’ utility
but also their esteem. Suppose agents who stay off the network are able to hold motivated beliefs
about their rank because they lack information about how they compare. We can model this in
simple terms by assuming agent i’s esteem is boosted by ~ if they stay off the network. With this
modification, the network lowers esteem since it prevents agents from holding motivated beliefs.
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However, equation (6) shows that when salience is high (o« > C' — 1), agent i’s
desire to join the network is increasing in a. Intuitively, increasing o makes the
rat race more intense, which puts more pressure on agents to join the network and
participate in the rat race. Because we cannot rule out the possibility of multiple
equilibria, we focus on the effect of « in the largest equilibrium. In the largest
equilibrium, increasing salience (o) increases the network size (¢,). The following

proposition summarizes.
Proposition 5.

1. When the salience of esteem is low (o« < C' — 1), raising salience has no effect on
network size (q).

2. When the salience of esteem is high (o« > C' — 1), raising salience weakly increases
network size (q,) in the largest equilibrium.

4.3 Social Comparison on Platforms

Proposition 5 suggests that a platform might try to increase the social-comparison
aspects of its network («) as a way of driving participation. There are a variety
of design choices media platforms make that could raise a. Examples include
prominently displaying engagement metrics such as “likes,” shares, and follower
counts, and algorithmic feeds prioritizing content that performs well according to
these metrics. Experimental evidence shows that exposure to “upward compari-
son” (content—profiles depicting more attractive lifestyles, higher social activity,
or healthier habits) lowers users’ self-esteem (Vogel et al., 2014). By curating feeds
to highlight such content, platforms make social comparison more salient (increase
@), intensifying the competitive pressures in our model.

Recent empirical work suggests that platforms indeed have an incentive to pro-
mote these harmful design features. For instance, in a large-scale field experiment
on Facebook, Twitter, and YouTube, Beknazar-Yuzbashev et al. (2025) find that re-
ducing exposure to “toxic content” significantly lowers time spent on these plat-
forms, as well as advertising impressions.

Several high-profile cases suggest that platforms recognize these harms yet pre-
serve these features anyway. In 2019-2021, Instagram ran a global experiment
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hiding public “like” counts, with the stated aim “to make it less of a competi-
tion” (Booker, 2019). Independent evidence from Wallace and Buil (2021) and oth-
ers shows that removing visible “likes” reduced negative affect and loneliness,
consistent with lowering a. The change received positive user feedback, but Insta-
gram ultimately made it optional rather than the default—maintaining the com-
petitive pressure that fuels engagement.

Taken together, the evidence points to a structural misalignment, where fea-

tures that cause widespread harm also make social networks more profitable.

5 Conclusion

There is significant evidence that social networks, despite their popularity, are
harmful to users. In this paper, we ask why such networks arise in the first place,
and what features make them “bad.”

We show that networks with the feature 0 > a > b are not only harmful if
they get established but also get established easily. Effectively, these are parties that
people do not like to attend but feel more and more pressure to attend as others
choose to do so. A few “instigators” is all it takes to get such networks started.

While networks with the feature 0 > a > b might seem counterintuitive, we
argue that they arise naturally in many settings. Rat races make networks bad—
yet they also create pressure to join. We argue that rat races are a pervasive fea-
ture of social networks. Moreover, amplifying the rat-race nature of social net-
works boosts network size which, while harmful to consumers, may benefit the
platforms.

This paper (see Proposition 3) suggests that traditional policies, such as Pigou-
vian taxation, can serve as helpful remedies. However, once networks are es-
tablished, “marginal” policies may be insufficient to induce socially optimal out-

comes.
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6 Appendix: Proofs

6.1 Proof of Proposition 1

To begin, we prove a Lemma.
Lemma 2. Forany q € (0,1),

din(ei Ce > FH (1 - q)) =F Y1 —q).

Proof. Letting € = F~(1 — q), we can write

E(c;: ¢ > ) :/:ef(e)de.

So we have
de 1 1

dg f(F'(1-q) f@

Hence by Leibniz integral rule,

which completes the proof. O
We now prove the proposition.

Proof. Recall that welfare is given by

W(q) = ap(q)q +bp(q)(1 — q) + E(e; : € > ¢).

To begin, suppose a < 0. Then welfare cannot be maximized at 1 since W (0) =

0 > a = W(1). So either welfare is maximized at 0, or welfare is maximized at an

19



interior point. For now, suppose that the optimum is interior. The first derivative

of welfare is given by

W'(q) = alqe'(q) + (q)) + b((1 — 9)¢'(q) — @(q)) + F (1 —q)
= (a—Db)p(q) + (ag +b(1 — q))¢'(q) + F (1 —q)

where the F7!(1 — ¢) term comes from Lemma 2.

Now, in any interior equilibrium, equation (2) implies that
(a=b)p(g" ")+ F (1 —¢"") =0.
So it follows that

W' (q"F) = (a = b)e(d"7) + (ag™” +b(1 — ¢"))' (") + FH (1 — ¢"F)
= (ag"" +b(1 — ¢"7))¢ (¢V7) (7)
<0,

where the inequality comes from the fact that ¢"* € (0,1) = ¢/(¢"F) > 0 and
0 > a > bimplies ag + b(1 — ¢) < 0 for all ¢. So in any interior equilibrium, welfare
can be improved by decreasing the number of agents on the network. It remains to
show that there cannot be some other “global maximum” of the welfare function
at ¢* > ¢™*. Since the Nash equilibrium is unique, for any ¢ > ¢""¥ we must have
(a —b)p(q) + F71(1 — q) < 0, and therefore

W (q) = (a—0b)plq) + F'(1 = q)+ (ag + b(1 — q))¢'(q) <0,

N J (& J/
—~~ N

<0 <0

which shows that the global maximum ¢* to the planner’s problem can never be
larger than ¢™¥. Hence if ¢* is interior then ¢* < ¢"¥. Finally, if ¢* = 0 then clearly
the NE is still too large since ¢ > 0 (in particular, ¢"¥ > 1). This proves Propo-
sition 1 for bad networks.

Now suppose a > b > 0 so the network is good. Then by exactly the same
reasoning, the slope of welfare at the NE is given by equation (7), which, fora,b > 0
is strictly positive. Moreover, since (a — b)¢(q) > F~(1 — q) for ¢ < ¢ it follows

that the smallest solution to the planner’s problem must be larger than ¢"'*, since
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in particular

(a—b)e(q) + (ag +b(1 — q))¢'(q) > (a —b)p(q) > —F (1 —q).

That is, W'(¢q) > 0 for ¢ < ¢"*. Hence the welfare maximizing quantity is always
larger than ¢™*, which completes the proof of the proposition. O

6.2 Proof of Corollary 1

Proof. The corollary is immediate from the argument preceding Lemma 1. In par-
ticular, since ¢"¥ > 1, but the mass of agents with ¢; > 0 is 3, any agent with
€; < 0 who joins the network is strictly worse off than if the network never existed.
These agents receive a strictly negative payoff in equilibrium but would receive 0
if g = 0. O

6.3 Proof of Proposition 2
We begin by proving part 1. of the proposition.

Proof. As argued in the text of Section 3 and depicted in Figure 1, strictly more than
1 of all agents must join the network in any NE. This is because it is a dominant
strategy to join for all agents with ¢; > 0, which leads at least some agents with

€¢; < 0 to join. Note that the equilibrium condition can be written as

(a—=b)p(g"") = —F'(1-¢""). (8)

Since F1(1 — ¢"F) < F7'(3) = 0, (as f is symmetrically distributed around 0),
it follows that at any ¢ satisfying equation (8), the RHS —F~!(1 — ¢"¥) is strictly
positive. But for ¢ > 1 the RHS is also strictly convex. Indeed, it is easily shown

e - PP = g)

a0 g
So for any ¢ > 3, wehave F"!(1 —¢q) <0 = f/(F'(1—gq) > 0, and the
denominator is always positive, thus we conclude ——F '(1—-¢) > 0. On the

other hand, the LHS (a —b)¢(¢"¥) is weakly concave by assumption, and ¢(0) = 0.
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Taken together, this implies that there is a unique equilibrium— a weakly concave
1

29
either there is an intersection at a point strictly less than 1, or else —F~!(0) = ¢ <

and strictly convex function on [3,1] can have at most one intersection. Hence

(a — b), in which case the unique equilibrium is ¢"* = 1, which proves part 1.
of Proposition 2. O

Before we prove part 2. of the proposition, it is convenient to prove the follow-

ing Lemma.

Lemma 3. Forall ¢ € [0,1],
E(e: 6> F ' (1—q)) <cq. )

Proof. For notational simplicity, let ¢, = F~!(1 — ¢) and define

1) = [ es(ode

q

Then since € < c over the range of integration,

We now prove part 2. of the proposition.

Proof. First, since ¢ is concave with ¢(0) = 0 and (1) = 1, observe that we have

the elementary bounds
¢ < g <L (10)

Using the lower bound and the fact that a, b < 0, we have

ap(q)g + bp(q)(1 = q) < ag® +bg(1 — q) = (a — b)g* + bg. (11)
Combining equation (11) with Lemma 3 gives

W(q) < (a —b)g* +bg + cq.
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Since ¢ < —a, we have

W(q) < (a—b)¢* +bg — aq
= —(a—="b)q(1 —q).

This proves that W (q) < 0 for all ¢ € (0, 1). Finally, W(1) = a < 0, hence W(q) < 0
for all ¢ > 0 and so ¢* = 0 is uniquely optimal for the planner. Since an agent
with the largest possible idiosyncratic benefit ¢ from joining the network receives
—a + ¢ < 0 in the Nash equilibrium, it follows that all agents are worse off on the

network in equilibrium. O

6.4 Proof of Proposition 3

Proof. Define
B(q) = (a—=b)g+ F (1 —q),

With ¢(¢) = ¢ and a constant tax 7, agent 7 joins the network if
6> (b—a)g+m,
hence the equilibrium condition is
g=1—-F((b—a)g+7),

which is equivalent to B(q) = 7. Suppose the planner’s optimal participation

¢* € (0,1) is interior. Then the constant (Pigouvian) tax is given by
™ =7"(¢") = —(aq* +b(1 — q*)) > 0.

Step 1 (Quantile—tail identity and concavity). Define

H(q) = Elei: e > F'(1—¢q)] = /C z f(z) dz.
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We know from lemma 2 that

Hl(q) _ F71(1 — q)’ H”(q) == f(Ffl(l — q))

so H is strictly concave on (0, 1).
With ¢(q) = ¢, welfare is

W(q) = (a—0b)¢*+bq+ H(q).

Recall that the planner’s optimum can never be ¢* = 1, sincea = W(1) < W(0) = 0.
Moreover, if the planner’s optimum is ¢* = 0, the optimal policy bans the network,
7% = 400, and the unique equilibrium is ¢ = 0, so the result is immediate. Hence-
forth assume ¢* € (0, 1). Then the first-order condition (FOC) is

W'(g)=0 <= 2a—0b)q* +b+ H(q")=0. (12)

Step 2 (Equilibrium at the optimal tax). Under the Pigouvian tax 7%, the equi-
librium condition for any ¢ € (0, 1) is B(g) = 7*. Since 7* = B(¢*), this implies

(a=0b)q+H'(q) = (a—0b)q"+ H'(¢"). (13)
Combining (13) with the FOC (12) yields the identity
(a=b)(¢+q)+H(q)+b = 0, (14)

which holds for every equilibrium g.

Step 3 (Strict concavity gives a strict lower bound on W (q) — W (q*)). Suppose
for a contradiction that ¢ # ¢* is an equilibrium under the tax 7* (i.e. ¢ satis-

ties (13)). By strict concavity of H,

H(q)—H(q") > H'(q)(q—q").
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Therefore

W(g)—W(g") = (a=b)(F—q?) +blg—q") + (H(q) — H(q"))
(?—q?)+b(g—q)+H(q) (¢ —q)
— (a—a")[(a=b)la+q") +b+ H(qg)

= O’
where the final equality follows from (14). Hence
W(g) = Wla") > 0,

which contradicts the optimality of ¢* for the planner. Therefore no ¢ # ¢* can
solve (13), i.e. B(q) = 7 admits the unique solution ¢ = ¢*. ]

6.5 Proof of Proposition 4

Proof. Proposition 4 is proved in the text of Section 4. O

6.6 Proof of Proposition 5

Proof. First, suppose a < C — 1. Then by equation (5), utility does not depend
on a. Hence raising the salience has no effect on incentives, and therefore on the
network size ¢,.

Now suppose o > C' — 1. Then by equation (6), agent i joins the network when

€ > —B¢ —a(l —gq)+C—1

Since the RHS is strictly decreasing in «, the probability P(e; > —8¢, — a(1 — ¢,) +
C — 1) is weakly increasing in «. Hence the largest intersection of the line ¢, with
P(e; > —Bqy — a(l — ¢q,) + C — 1) is also weakly increasing in a. Therefore, the
largest equilibrium network size ¢, (which is defined by the largest solution to
¢ = P(e; > —f¢, — a(1 — q,) + C — 1)) is weakly increasing in ¢, as claimed. [
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