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Abstract

Many social and economic behaviors, from technology adoption to protest participation,
are complex contagions requiring social reinforcement. In these settings, agents take an action
only if a minimum number of their neighbors also do so. While threshold models capture this
core mechanism, deriving tractable comparative statics for how behavior responds to network
structure has proven elusive, rendering policy recommendations for network design intractable.
We introduce a new approach using large random networks. This unlocks powerful comparative
statics and allows us to solve for the optimal network design by a principal who influences overall
network connectivity but not its exact structure. We find that as connectivity increases, par-
ticipation jumps discontinuously from zero at a critical cut-off and exhibits diminishing returns
thereafter. This reveals a “missing middle” in the principal’s optimal choice: network connectiv-
ity is either set at the critical threshold to prevent participation, or pushed substantially above
it.
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1 Introduction

In many economic settings, an individual will take an action only when enough of their peers do. An
employee adopts a new workplace norm only if enough of his closest colleagues do; a citizen joins a
protest only when a critical mass of friends will provide “safety in numbers”; an individual continues
speaking a minority language only when enough peers speak it too. These phenomena, known as
complex contagions, are central to understanding behaviors ranging from corporate culture and
technology adoption, to political mobilization and the spread of social normsE]

An important feature emerging from empirical work is that behavior in these settings can some-
times change suddenly in response to modest changes in the environment. For example, controlled
network experiments show that a committed minority of roughly 25% can flip a prevailing social
convention; just below this cutoff, change rarely occurs, while just above it, adoption spreads rapidly
(Centola et al., [2018). Outside the lab, bank runs can propagate along interbank exposures, with
deposit withdrawals rising steeply at institutions more exposed to a failing bank (Lyer and Peydrd,
2011)). This “tipping point” dynamic (Schelling, 1978)—where modest changes in connectivity
or early participation produce outsized changes in outcomes—has also been observed in political
mobilization (Madestam et al., [2013; [Enikolopov et al., 2020)).

A more limited empirical literature investigates the network design choices of principals—such
as governments or firms—who have some control over interactions among agents. Such principals
appear to adopt “extreme” strategies. For example, King et al.|(2013]) find that Chinese government
censorship focuses on suppressing coordination and the spread of actions, but still tolerates broad
criticism. This is suggestive of a policy targeted at keeping activity below a tipping point. More
starkly, the growing use of internet shutdowns during protests or contested elections represents
an extreme choice to dramatically reduce connectivity, forgoing its economic benefits in order
to eliminate the possibility of digitally coordinated collective action (Access Now, 2022; [V-Dem

Institute, 2024)).

L A substantial body of empirical work has documented the importance of social reinforcement in settings as varied
as the adoption of new agricultural technologies (Bandiera and Rasull |2006; [Beaman et al., [2021), communication
technologies (Bjorkegren, 2019), birth control use (Munshi and Myaux} [2006), health behaviors (Christakis and
Fowler|, [2007], [2008), and protest participation (Larson et al., [2019; |Gonzalez, |2020; Bursztyn et al., |2021)).



Despite this accumulating evidence, existing theories do not give us a clean map from net-
work structure to behavior. Fixed-network analyses deliver rich microfoundations but make it hard
to obtain clean comparative statics with respect to network structure, while more tractable ap-
proaches to date push the network into the background (either by using mean-field approximations
or abstracting from the network altogether). As a result, in complex-contagion environments we
still lack a simple benchmark that links explicit network structure to equilibrium behavior and to
a principal’s optimal design. Our contribution is to provide such a benchmark and to make the
relevant comparative statics and design problem tractable.

We develop a model that is consistent with these empirical regularities and that clarifies the
connection between a sharp tipping point in participation and extreme strategies in optimal design.
In our framework, the discontinuous onset of participation (which arises from a network property
with a sharp threshold) means that intermediate levels of connectivity are never optimal for a
principalﬂ Optimal policies place either exactly at the cutoff or well above it. This is because
the principal in our setting dislikes participation but benefits from network connectivity. So the
discontinuous jump up in participation must be made up for by even more network connectivity.

More concretely, we consider a setting where the principal can influence the overall connectiv-
ity of a network formed among a large number of agents, but cannot control its exact structure.
This captures a realistic constraint: a principal can influence the environments for interaction (e.g.,
through communication platforms, public forums, or open-plan offices) but cannot micromanage
individual relationships. Focusing on the limit of a large random network allows us to fully charac-
terize equilibrium behavior and solve the principal’s design problem, yielding precise and testable
predictions.

Our first set of results characterizes the relationship between network connectivity and equilib-
rium participation—the fraction of agents who take the action. Below a critical cutoff, participation
is zero. Just above this cutoff, participation jumps discontinuously—to at least a quarter of all

agents. We demonstrate that both the critical connectivity cutoff and the size of this discontinuous

2This mechanism is distinct from other sources of discontinuity studied elsewhere (e.g., those arising from input
complementarities in supply networks); we discuss those connections in the Related Literature and emphasize that
here the discontinuity is a primitive of complex contagion itself.



jump are increasing in the number of neighbors each agent needs to take the action for them to
want to do so too (which we call the participation threshold, k). Beyond the jump, participation
is a strictly concave function of connectivity. These sharp theoretical predictions are derived by
analyzing the properties of the network’s giant k-core—the sub-graph of agents whose participa-
tion is endogenously sustained by mutual peer Supportﬁ The giant k-core has been studied in pure
mathematics, but our results on its monotonicity and concavity are new, and are the key drivers
of the economic outcomes.

Our second contribution is to solve the principal’s optimal choice of network connectivity. This
reveals a “missing middle” in her strategy. Suppose the principal receives some benefits from
connectivity but finds participation by agents costly. The discontinuous jump in participation
forces a stark trade-off: to accept any participation is to accept a large amount of it. Consequently,
the principal’s optimal choice is generically unique and located at one of two extremes. She either
sets connectivity precisely at the critical threshold, ensuring zero participation. Or, she chooses a
substantially higher level of connectivity where the intrinsic benefits are large enough to outweigh
the costs of widespread participation. Intermediate levels of connectivity are never optimal; the
principal is “in for a penny, in for a pound.”

Finally, our analysis shows why complex contagions are so resistant to random seeding—a
common policy intervention. We show that random seeding has a direct, linear, effect on the
agents who are seeded—but fails to trigger a cascade among other agents. Our model precisely
quantifies this failure: unless the seeding is large enough to eliminate a giant k-core on its own, it
has almost no impact. Our findings complement the work of |Jackson and Storms| (forthcoming)
and formalizes the empirical intuition that interventions must be targeted and create local density,

not just isolated adopters, to succeed.

A Roadmap. The rest of the paper is organized as follows. Section [2| discusses related literature.
To build intuition Section [3] presents a simple example using a fixed network. Section [4] sets out the

model. Section [f] characterizes agents’ behavior. Section [f] characterizes the principal’s behavior.

3The ‘giant k-core’ is the large random networks analogue of the ‘k-core’. The k-core is known to be critical in
characterizing equilibrium behavior in threshold games on finite, deterministic networks (Gagnon and Goyall 2017}
Langtry et al.| [2024).



Section [7] examines other interventions the principal can use. Section [§] discusses some directions

for future work and concludes. All proofs are deferred to Appendix [A]

2 Related Literature

Our paper makes two main contributions. First, we use random networks to study complex
contagions—settings where an agent’s action depends on the actions of several peers—and to
derive sharp, tractable comparative statics for equilibrium behavior. These comparative statics
have proven elusive in traditional fixed-network models. Second, we embed this analysis within
a principal-agent framework to solve for the optimal design of a network when the principal has
control over its connectivity, but not over the specific microstructure of links. This delivers sharp
predictions and policy insights for a mechanism central to many economic settings. Our work builds
on and contributes to three main areas of literature.

First, there is a large literature that studies models of complex contagions (sometimes called

threshold models), with applications to a very wide range of economic behaviorsEl These models

primarily use a fixed network (Gagnon and Goyal, 2017; Reich} |2023]), and often focus on the diffu-

sion of the action from some starting group of agents (Morris|, |2000; Acemoglu et al., 201 1|)E| Our
contribution is to provide precise comparative statics and network design insights that have proved
elusive in the fixed network setup. On a more technical front, we also provide new mathematical

results about the concavity and monotonicity of the giant k-core.

An important exception in this literature is Jackson and Storms| (forthcoming)), who use stochas-

tic block models in a complex contagion environment. Their focus is very different to ours. Their
goal is to understand (a) which groups of agents must take the same action in any equilibrium,

and (b) how to use this knowledge to best pick a set of initial adopters to maximize the spread

“These include technology adoption (Reich} [2023), protest (Chwel 2000), pricing (Zhang} 2025), financial contagion
(Rogers and Veraart), 2013; [Elliott et al., [2014)), persuasion (Candogan) 2022), and choices of whether to participate
in formal markets (Gagnon and Goyal (2017)). |Granovetter| (1978) and |Schelling| (1978) also suggest many other

applications.

5 Another approach has been to push the network into the background—by abstracting from it altogether
novetter} [1978; |Schelling), [1978)) or by imposing a ‘mean field” assumption (Jackson and Yarivl [2006; |[Lépez-Pintadol,
2006, 2008)—or to assume that agents only have partial information about the game (Galeotti et al. [2010; [Leis-|
ter et al.L . In contrast to these approaches, we keep the network very much in the foreground and maintain
complete information.




of a new behavior. Our focus is instead on comparative statics for overall equilibrium behavior
with respect to features of the network, as well as how a principal would design the network. We
discuss the implications of Jackson and Storms| (forthcoming)) with respect to seeding in our model
in Section [

Second, there is a small but growing literature that uses random networks to model social
and economic behavior. Most closely related to us is the strand of work that considers ‘simple
contagion’ settings—where agents only need one of their neighbors to take an action for them
to be willing to do so too. These models are typically used to explain behaviors driven by the
spread of information (Campbell, 2013} |Sadler, 2020; Akbarpour et al., 2020; |Campbell et al.,
2024alb; |Langtryl [2025). Simple contagions are known to behave very differently from complex
contagions (Centola and Macy, 2007; |Centola, 2010), and existing models are therefore ill-suited
for the behaviors we focus on. We develop a tractable model of complex contagions on random
networks with absolute (k-neighbor) thresholds.

Within the literature on random networks, our work also contributes to a technical literature
on ‘discontinuous phase transitions’—settings where small changes in network structure around
some critical cut-off induce a discontinuous change in equilibrium behavior. Watts| (2002) ana-
lyzed seed-driven cascades with fractional thresholds on random graphs. There, a discontinuous
phase transition arises when the network becomes dense enough that the “vulnerable cluster” loses
percolation. Work by Buldyrev et al. (2010) has shown that these transitions can be driven by
interactions between interdependent networks. Separately, |[Elliott et al.| (2022) show how such
transitions can arise from a need for multiple types of input in a supply network, doing so in a
setting with endogenous network formation. We identify an alternative mechanism: discontinuous
phase transitions arise directly from the threshold-based nature of complex contagion itself.

Third, we contribute to the literature on network design and formation. This literature has
increasingly focused on settings where a network forms and then agents play a game on the resulting
network (Galeotti and Goyal (2010)); [Sadler and Golub| (2021)); Kinateder and Merlino| (2017, [2022).
In part due to technical challenges, there is little work on network formation in a random networks

setting. [Elliott et al. (2022) and [Langtry (2025) are exceptions to this. However, these papers



consider endogenous formation by the agents. In contrast, we consider optimal design by a principal.

Before presenting the formal model and analysis, we begin with a simple, illustrative example
using a small number of agents and a principal who can control the exact network structure. To
help fix ideas, we focus on the specific example of a government seeking to quash political protest
among its citizens. This example captures the main trade-offs the principal (government) faces, and
showcases many results which appear intuitive. However, it also demonstrates a critical limitation
of using fixed networks: these intuitive results cannot be established rigorously because comparative
statics are weak. We can say very little about how equilibrium behavior responds in general to

changes in the network structure, or to the principal’s incentives.

3 An Illustrative Example

Set-up. Citizens N = {1,...,8} interact in a social network. A government oversees these
citizens, and can control the links between them in the network. Links between citizens raise
productivity—from which the government benefits—but also help coordinate protest. The produc-
tivity benefits are concave in the number of links. Each citizen prefers to protest if and only if
at least 3 of her neighbors in the network do so tooﬁ Assume that, given the network, citizens
are able to coordinate on the largest equilibrium protest. The cost of protest to the government is
proportional to the fraction of citizens who protest. Letting L be the number of links, and a be
the fraction of citizens who protest, the government’s payoff is:

©(L)= aL-L* — Ba , witha,B>0. (1)

productivity benefits  protest costs
For the purposes of this example, we take o = 36.
Who protests? Any citizen with fewer than 3 neighbors will never protest. Suppose we remove

these citizens from the network and consider who will protest in the reduced network. By the

same logic, any citizen with fewer than 3 neighbors in the reduced network will never protest. If

SGames where an agent takes an action if and only if a certain number, or fraction, of others do so too are often
called ‘threshold games’.



we repeat this process until a further iteration does not remove any citizens, those who ‘survive’
are precisely the citizens who will protest. This process finds the citizens in the network’s $-core:
the largest induced sub-network in which every citizen has degree at least 3. Thus, in the largest

equilibrium of this threshold game, citizens protest if and only if they belong to the 3-core.

How many? With 8 citizens, the maximum number of links possible without a 3-core is 13[| We
show such a network in Figure . Adding any 14™ link must create a 3-core, as shown in Figure .
Because every citizen in the 3-core must have at least 3 neighbors, a 3-core must contain at least
4 citizens. So adding a 14" link creates a large jump in the fraction of citizens protesting—from
zero, up to one half.

Adding further links has a ‘concave’ effect on the number of protesters. It is possible to add 2
more links while keeping the number of protesters to 5, to add 3 more links on top of that while
keeping the number of protesters to 6, and then 4 more links on top of that while keeping the

number of protesters to 7. Figure 2JA shows this graphically.

What does the government do? First note that the government would never want have more
than 18 links here because the ‘direct’ productivity benefits (361 — L?) are maximized with 18
links. With 18 links, at least 6 citizens protest (see Figure and Figure [2A).

We can easily calculate the government’s payoff for different numbers of links. We show this in
Figure 2B. The key insight is that it is never optimal to choose something just above the threshold

(e.g., L = 14,15). If protest is costly to the government (5 > 1%0) then it is best to stop ezactly

at 13 links. And if protest is not too costly to the government (5 < %), it is best to go far past
the threshold to the unconstrained optimum of 18 links. In this sense, there is a missing middle
in the government’s decision-making. Either it stops creating links before there is any protest, or

it accepts significant protest and creates links far beyond the threshold. Intermediate numbers of

links are never optimal; the government is “in for a penny, in for a pound.”

"This follows from [Lick and White| (Corollary 1,[1970)).
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A. 13 links. No 3-core.

B. Adding link 3 —4 (14'" link) creates a 3-core: C. 14-link network with 6 protesters. Adding one
with citizens {1, 2, 3,4}. Adding one further link further link (a 15" link) can remove a citizen
(a 15" link) must add a fifth citizen to the 3- from the 3-core if rewiring is allowed.

core.

D. There is some protest, it is optimal to go well E. Optimal 19-link network if k = 4.
past the threshold; here there are 18 links, and 6
citizens are in the 3-core.

Figure 1

Limitation of fixed networks. On the face of it, equilibrium behavior appears to exhibit some

regularities that depend on the underlying fixed network. For example, under the government’s
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B. Benefits and costs by number of links.

Figure 2

optimal choice of network structure we observe concavity in the number of protesters as a function
of the number of links (see Figure ) But making predictions about how protesting changes
depends intimately on (1) the exactly structure of the network, and on (2) how much control we
give the government.

On (1), we can see in Figure [1B that adding a link can either add one protester (e.g. link 8 —3)
or two protesters (e.g. link 8 — 5). But starting from the network in Figure [I|C, adding a link can
either add no protesters (e.g. link 8 — 3) or one protester (e.g. link 8 — 5).

On (2), whether the government can rewire completely the network, or only add links—which
we contend is the conceptually preferable approach—matters a lot. In Figure[I|C, if the government
could rewire the network, then she could add one more link while reducing the number of protesters
by one. But if she cannot, then adding one link to the existing network at best keeps the number
of protesters constant.

A separate but related difficulty with analyzing fixed networks is that the ‘best’ network with

a given number of links changes as the number of neighbors each citizen needs to protest for them

10



to want to protest too (which we call the participation threshold, k) changes. But moving between
optimal networks would require the principal to rewire links. The network in Figure is optimal
for the principal when k = 3—it has 6 protesters. But when k increases to 4, the number of
protesters does not change. In stark contrast, the network in Figure [[E performs very poorly for
the government when k& = 3—all 8 citizens protest. But when k increases to 4, the number of
protesters falls all the way to zero. So the microscopic details of the network structure preferred
by the government depends critically on the participation threshold, k.

Taken together, these issues prevent clear comparative statics: we cannot say with any rea-
sonable degree of precision what happens to the number of protesters as the connectivity or par-
ticipation threshold change. This fundamental limitation is overcome by modeling the interaction
structure as a large random network. Moreover, the random network setting lends itself more nat-
urally to the constraints a government faces when designing a network in reality—that they cannot

control its microstructure. We now present our formal model.

4 Model

We consider a sequence of games {F(”)}neN indexed by the number of agents n. We now describe

the structure of a specific game I'("™).

Agents, Actions & Timing. There is a single principal (‘she’), P, and n agents (‘he’), indexed
i € N ={1,..,n}. In the first period (¢ = 1), the principal chooses an interaction rate r > 0.
Then Nature forms an Erdés-Rényi random graph G(n, ). That is, for any pair of agents, a link
is formed independently with probability r/n. In a slight abuse of notation, we will let G denote
the adjacency matrix of a realization of the random graph. So G;; = 1 if i, are linked (i.e. are
neighbors) and G;; = 0 otherwise.

In the second period (¢t = 2), each agent simultaneously chooses whether or not to take a binary

action, a; € {0,1}. For clarity, we will say that an agent who takes action 1 participates, and an

agent who takes action 0 abstains.
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Preferences: principal. We assume that the principal has a linear direct benefit from inter-
actions among the agents, and faces a convex (for simplicity, quadratic) cost of increasing the
interaction rate. Finally, participation by agents (denoted by a) is costly to the principal. The

principal’s payoff function is:
_ 1,2 _
n(r) =ar — 3" — pa, (2)
where o, 8 > 0, and a = % >, a; is the fraction of agents participating in the action

Preferences: agents. Agents’ actions are strategic complements: participating is more attractive
to agent ¢ when more of her neighbors in the network participate. Specifically, an agent i prefers
to participate (i.e., choose a; = 1) if and only if at least & > 3 of her neighbors also participate.
We call k the participation threshold. Agents’ preferences can be represented by a utility function

u;(a;, M;) such thatﬂ

U; (1, MZ) > U (0, Mz) <~ M,; > k, where M; = Z Gijaj. (3)
J#i

Notice that because the network is unweighted, it is without loss to assume that k is an integer.

Information. For expositional simplicity, we assume that the realization of the network is com-
mon knowledge to agents. This means that actions a; are functions a; = a;(G) of the realized
network G = G(n, ) observed by agents. In Online Appendix |B| we provide a microfoundation
which demonstrates that our reduced-form model can be viewed as the outcome of a model in which

agents participate in an explicit diffusion process and only observe the actions of their neighbors.

Equilibrium. A strategy profile (r*, ay,as,. .. ,a;‘l) is a subgame perfect Nash equilibrium of the

game I'(" if, for any realization of the graph G (n, %) the actions a; constitute a Nash equilibrium

8We think of B8 a as capturing the overall harm to the principal from agents’ participation. We could equally as
well have assumed that the principal’s payoff depends on some concave function of @, and this would not qualitatively
change our main results.

9An alternative payoff specification one might consider is one for which agents’ thresholds depend on the fraction
of their neighbors taking the action rather than the absolute number. We refer the reader to [Watts| (2002)) for a
canonical fractional-threshold model of cascades on random networks.
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of the adoption phase:
forallie N, a; =1 < w;(1, M) > u;(0, M),
and the firm chooses r* such that
r* € argmax Ep, [r(r,a")],

where a* = % >, af is the equilibrium level of participation in the second stage. The expectation
Ep, is taken with respect to the distribution P, over networks generated by the principal’s choice of
r. This definition of equilibrium thus requires that (i) agents are best-responding to other agents
given the realized network, and (ii) the principal maximizes her expected payoff, anticipating both

the network structure that arises from r and the resulting actions that agents choose.

4.1 Discussion

Having set out the formal model, it is helpful to briefly discuss some key assumptions: (i) actions
by agents are strategic complements, (ii) the principal controls only the interaction rate, and (iii)
the principal anticipates the “worst” equilibrium (the one with the highest level of participation by

agents).

Strategic complementarities. The model’s core mechanism is a participation threshold driven
by strategic complementarities. We interpret this broadly as a process of social reinforcement,
where an agent’s incentive to act is fundamentally linked to the actions of their direct network
connections. The parameter k represents the critical mass of local support required to make an

action attractive.

Controlling the interaction rate. The assumption that the principal controls only the interac-
tion rate captures a natural constraint: she can encourage (or discourage) agents from interacting,
but cannot control exactly who they interact with. In our model, the principal lacks the fine-grained

tools required to engineer the network exactly as she would like it. For example, if the principal

13



were a firm and agents were workers, then our model takes the interactions among workers to be
serendipitous. Interactions might provide a worker with the right piece of information at the right
time, allowing them to solve a problem at hand or introduce a process innovation in their job.

These types of interactions cannot easily be planned in advance.

Equilibrium Selection. Because the agents’ actions exhibit strategic complementarities, the
second stage of our game may admit multiple Nash equilibria (notably, a; = 0 for all i is always
a Nash equilibrium of the second stage). Given this multiplicity, our analysis focuses on the
equilibrium with the largest number of participating agentsm This equilibrium represents a worst-
case scenario for the principal. One natural reason for the principal to anticipate the largest
equilibrium is if a; = 1 represents the “default behavior”, and a; = 0 a “new” behavior. In this
case, a standard adaptive best-response dynamic selects the largest equilibrium. We discuss this

further in Online Appendix [B]

4.2 Some Applications

To motivate the analysis, we briefly outline several settings that share the key features of our model.
These examples are illustrative, not exhaustive; our formal results concern the general mechanism

of complex contagion, which applies independently of any single empirical domain.

1. Resisting Authoritarians. A citizen’s decision to oppose an authoritarian leader or po-
litical party often depends on what their friends do for several reasons: providing “safety in
numbers”, creating peer pressure to “do the right thing”, and increasing the perceived impact
of the action. A would-be authoritarian (the principal) can influence the interaction rate by
limiting citizens’ ability to gather, either in person or online. The empirical evidence is consis-
tent with the view that regimes act on this lever, for example by targeting online connections
along which behavior can spread (King et al.. [2013) (and being much more permissive about

connections that do not spread behavior)E or deploying all-or-nothing internet shutdowns

9Gince, by definition, small equilibria can never be “viral” (in the sense of [Sadler, [2020), several papers using
games on random graphs have focused on the largest equilibrium (see, e.g. |Campbell et al., 2024al).
1Note that our model could easily be extended to account for a multiplexed network in which other layers may
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during protests and elections (Access Now, 2022; [V-Dem Institute, 2024]).

. Inclusive behavior at work. Workers’ decisions about whether to bully, harass, or shirk
are often sustained by cumulative peer pressures: workers face pressures to do what their
coworkers do. A firm (principal) that wants to change its workers’ behavior from some exist-
ing default (a; = 1) has significant—albeit indirect—influence over how much they interact:
choosing where to put the water cooler, how to lay out the office, setting work-from-home poli-
cies, or implementing more direct measures like changing reporting structures or encouraging

out-of-work socializing.

. New customs. People’s adoption of a new custom, fashion, or cultural norm often relies on
peer pressure and “social proof”. A new behavior feels more legitimate and less socially risky
when one’s friends have already adopted it. A firm or government that wants people to take up
the new custom may be able to influence the social network—for example, by making the new
custom more or less visible to a person’s friends. In laboratory and field settings, adoption of
social norms and conventions often displays tipping once a critical mass is reached (Centola,
2010; |Centola et al., |2018]), a qualitative pattern mirrored by the discontinuous onset of the

giant k-core at ¢g in our model.

Our model also describes many other settings, including the adoption of new technologies or

the preservation of minority languages. With these applications in mind, we now characterize the

behavior of the principal and the agents in equilibrium.

5 How Agents Behave

We begin with the second stage of the game, and characterize how agents’ behavior depends on the

interaction rate, r. The second stage is a threshold game played on the realized network, G. So

before going further, it is important to discuss the role of the k-core in characterizing equilibrium

behavior.

affect the payoffs of the principal (and/or of the agents) but do not exhibit strategic complementarities. Since these
layers do not affect strategic incentives at the margin, they would have no impact on behavior.
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5.1 Equilibrium and the k-core.

In threshold games on networks, the set of participating agents in the largest equilibrium is deter-
mined by the network’s “core structure”. The k-core of G is the largest subgraph H of G such that
every agent in H has at least k neighbors in H (Seidman, 1983). In our model the set of agents
who participate in the largest equilibrium is precisely the k-core of the network G. We formalize

this in the following remark.

Remark 1. In equilibrium, agent i participates (a; = 1) if and only if they belong to the k-core of

the network G(n, ).

We can see why this is the case by considering how agents might reason about a stable outcome.
Any agent with fewer than k neighbors in the entire network knows he can never meet the partic-
ipation threshold, so he will choose to abstain. Knowing this, other agents can revise what they
expect their neighbors to do. An agent who initially had k neighbors might now expect fewer than
k to participate, causing him to also abstain. This iterated removal of agents who lack sufficient
support continues until only a stable group remains. The agents left are exactly those in the k-core;
each has at least k connections to others who are also participating.

The direct link between the largest equilibrium and the k-core provides us with a powerful
analytical tool. The principal’s problem can now be re-framed as choosing an interaction rate r to
maximize her expected utility, knowing that the fraction of participants, a, will be determined by
the expected fraction of agents belonging to the k-core of the resulting random graph G(n,r/n).

The relationship between equilibrium behavior and the k-core has been established in prior
studies of threshold games on fixed (finite) networks (Gagnon and Goyal, 2017; |[Langtry et al.,
2024). However, as illustrated in our introductory example (see Section , on fixed networks it is
very difficult to make strong predictions about how equilibrium behavior changes as a function of
the primitives of the models—comparative statics are elusive.For this reason, and in line with the
literature on large-scale social and economic phenomena, the remainder of our analysis focuses on
the asymptotic properties of the model as the number of agents n — oco. As such, the equilibria

we characterize are limits of subgame perfect equilibria of the finite games F(”) An important

12 A1l references to “equilibrium” from hereon in should be taken to mean “limits of equilibria in the sequence of
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feature of the limiting game will be the presence (or absence) of a giant k-core: a k-core containing a
positive fraction of all agents (with high probability as n — c0). We will often omit the limit in our
statement of results, but any such results should be understood as applying with high probability
as n — oo. Our approach allows us to derive a sharp, analytical characterization of the equilibrium

outcomes and to provide clear insights into the trade-offs the principal faces.

5.2 Equilibrium behavior

Our characterization of equilibrium behavior in the second stage relies on established results from
random graph theory. The existence of a giant k-core is known to depend on a sharp cut-off condi-
tion (Pittel et al., 1996)@ Above this cut-off, its size is strictly increasing in network connectivity—
which, in our model, is the interaction rate r. This provides the crucial link between the principal’s
choice of r and the resulting equilibrium participation.

To fix ideas, we refer to the fraction of agents who choose action 1, a* = lim, o % >, ar, as
the (level of) participation. It is also convenient to define 1% (r) = P(Poisson(r) > k), and to let

p = pi(r) be the largest solution in [0, 1] to the equation

p=Yr_1(rp). (4)

Equipped with these definitions, we can now characterize behavior in the second stage.

Theorem 1 (Participation). Fiz r > 0 and define ¢, = ming>g m Equilibrium participation:
(i) is positive if and only if the interaction rate is sufficiently high (r > cy).
(ii) is given by ay(r) = ¢(rp), where p is as in Equation ().

Theorem [I] establishes that participation is a non-linear phenomenon. A crucial feature for
k > 3 is that this emergence is discontinuous, in sharp contrast to the continuous emergence of

the standard giant component (the k = 2 case)@ Unless the interaction rate r exceeds the critical

finite games”.

13The critical cut-off condition is usually referred to as the critical threshold, however to avoid confusion we reserve
the word “threshold” for the participation threshold, k.

4 Taking the giant component and removing all agents with degree 1 yields the 2-core. The critical cut-off for the
emergence of the giant 2-core is identical to the critical cut-off for the emergence of the giant component (r = 1).
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cut-off ¢, the network is too sparse to support a giant k-core, and equilibrium participation is zero.
Above this cut-off, the fraction of participating agents @* jumps from zero to a strictly positive
value, characterized by part (ii).

The intuition for this discontinuity lies in the nature of social reinforcement required for partic-
ipation. For any group of agents to form a stable, self-sustaining equilibrium (i.e., to be a k-core),
each member must have their participation validated by at least k& neighbors who are also part of
that same group. When k = 2, this is a fairly weak requirement. When k£ > 3 it is far stronger.
We provide a more detailed intuition for this in Online Appendix [B] While the ezistence of this
discontinuity is an established result in random graph theory, we provide a novel result on its mag-
nitude. Importantly, we show that the size of the jump—which determines the minimum non-zero

participation level the principal can induce—is economically importantﬂ
Proposition 1 (Discontinuity). For all k > 3, if participation is positive then it is at least 0.27.

Recent empirical work has identified a critical mass of approximately 25% as the “tipping point”
required for a committed minority to overturn an established social norm (Centola et al., [2018).
This finding highlights the necessary conditions for initiating a large-scale behavioral cascade.
Proposition [1| provides a complementary theoretical perspective by characterizing the conditions
for the resulting behavior to be self-sustaining: under a moderate participation threshold (k = 3),
at least 27% of the population must participatem Our result provides a possible explanation for
this empirical tipping point: individuals are willing to adopt a new norm only when they perceive

the movement has enough momentum to reach a self-sustaining state.

5.3 Comparative Statics: how agents respond to the environment.

We now turn to analyzing the properties of equilibrium participation as a function of the primitives:

the interaction rate r and the participation threshold k. Part (ii) of Theorem [l allows us to derive

5Since 9k (rp) is an analytic function (see, e.g. Remark 4.7 [Janson| 2009), the derivative 1},_; exists and is well
defined.

16When k = 3 the minimum nonzero participation is approximately 0.27, but as k increases, so does the minimum
participation. For example, when k = 10, minimum participation is 0.74, an when k& = 100 it is around 0.95. In the
proof of Proposition Elwe provide a general expression for the minimum participation at any given k.
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clear and intuitive comparative statics: the level of participation is increasing in the interaction
rate and decreasing in the participation threshold.

The intuition here is straightforward. As the interaction rate increases, agents have more
neighbors on average. This increases the likelihood that the number of neighbors of an agent who
participates will exceed k, reinforcing participation. This is why the network can be a double-
edged sword for the principal: higher interaction rates lead to more participation. Conversely, a
higher threshold & means fewer agents will have sufficient participating neighbors, causing them to
abstain. This initial abstention can then induce other agents to do the same, ultimately reducing
participationm

Beyond monotonicity, we show that equilibrium participation also exhibits diminishing returns.
When participation positive, it is concave in both the interaction rate r and the threshold k. This

creates interesting trade-offs for the principal which we explore in Section

Theorem 2 (Comparative statics: monotonicity and concavity).

Equilibrium participation, @y (r), is:
(i) strictly increasing and strictly concave on (cx,00) for every fived k.

(ii) strictly decreasing and strictly concave in k for every fived r > cxy1. That is,

A1 (1) — @ (r) < @p(r) —ap_,(r) <0.

Immediately above the threshold a large measure of agents are “marginal”—each already has k—
1 neighbors who would remain in the k-core once it forms, so a small increase in the interaction rate
is very likely to give many of them the single extra link they need to qualify. Hence the derivative
0a*/0r is large just beyond ci. As connectivity keeps rising, agents’ degrees bifurcate: most agents
either (i) possess far more than k core neighbors, making additional links redundant, or (ii) have
very low total degree, so even an extra link or two still leaves them below the threshold. The mass

of truly pivotal agents—those with exactly k — 1 core neighbors—therefore shrinks monotonically

"In contrast, when there is zero participation in equilibrium, changes in the network connectivity and/or the
participation threshold have no impact. This follows immediately from Theorem i).
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with r, and each subsequent increase in connectivity converts ever fewer new participants. The
marginal return to r thus falls continuously, giving a strictly decreasing slope and hence a strictly
concave participation curve.

This result shows that diminishing returns are not an ex-ante assumption, but rather an emer-
gent property of the random network structure and the complex contagion process. While this
concavity does not play a role in our characterization of the principal’s behavior in Section it
is useful for examining the effects of seeding (see|7)). We also expect it may be independently useful
in other models that consider complex contagion in a random network setting.

For example, consider an alternative version of our model where the principal chooses the
participation threshold k > 3, rather than the interaction rate, r. If the costs (of setting k) were
linear in k, there there would be extreme “bang-bang” solutions. Either the principal would do
nothing, and leave k at 3. Or she would increase k to the point where there is zero participation@
This is a direct consequence of concavity. Since equilibrium participation ax(r) is concave in k, its
negative is convex. Hence a principal who dislikes participation and faces linear costs to increasing
k maximizes a convex function against a linear cost, which naturally yields extreme solutions.

Additionally, both parts of Theorem [2| are new mathematical results in their own right. The
concave relationship between the size of the giant k-core and each of network connectivity and the
threshold, k—which is the technical step that underpins Theorem [2—was, to our knowledge, not

previously known.

5.4 A summary in a picture

All of our results on the second-stage behavior can be seen graphically, by plotting network con-
nectivity, r, against the size of the giant k-core for various values of k. Figure [3| does exactly this.
We now turn to the first stage—the principal’s equilibrium choice of r—taking as given how agents

will behave in the second stage.

18This is because the principal dislikes participation in in our model, so subtracting a concave function (the
participation) from another concave function (the direct benefits/costs) need not be either everywhere concave or
everywhere convex.

For any fixed © > cs, it is clear that there exists a participation cutoff k(r) such that participation is positive if
and only if k& < k(r). The principal could reduce participation to 0 by increasing k above k(r).
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Size of the Giant k-core as a function of r
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Figure 3: Size of the giant k-core as a function of network density, for k¥ = 3 (blue) k = 4 (orange)
and k =5 (green). The red dashed lines show the critical cut-off for each value of k (Theorem .
Each curve is strictly concave and increasing in the region where it is nonzero (Theorem [2[i)).

Increasing k shifts the curve down, and where the giant k-core exists this has a larger impact at
lower r (Theorem (11))

6 How the Principal Designs the Network

6.1 Choosing the interaction rate

In the first stage the principal chooses the interaction rate, r. She does so taking into account
how agents will behave in the second stage. Using our characterization of second stage behavior

in Theorem (1} the principal’s payoff from choosing an interaction rate r is

m(r) = ar — 5% = B(rp(r)). ()
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So the principal’s problem is simple: choose the value of r that maximizes Equation . Since
m(0) =0, 7(r) < 0 for sufficiently large r, and the participation function is continuous, an equilib-
rium must exist@ Moreover, when an equilibrium exists it is generically unique—if there are two
or more equilibria then a small perturbation of /5 restores uniqueness (we discuss this further in
Online Appendix .

With existence and (generic) uniqueness in place, we now turn to a precise characterization of
the equilibrium interaction rate r*. We then show how r* changes with primitives of the model.
To do this, we leverage what we have proved about equilibrium participation in Section Let
rhaive — o This is the principal’s optimal choice of r in the absence of any preference over agents’

behavior (i.e., if 5 = 0). First, it is clear that the principal will never choose an interaction rate

naive naive

greater than r This is because any r > r is unambiguously worse: the benefit from

interaction (ar — %7"2) is already past its maximum, and the higher interaction rate also weakly
increases costly participation@

Second, the principal will never choose an interaction rate “just above” the critical cut-off. This
is because participation drops discontinuously when the principal brings down the interaction rate
exactly to the threshold. In contrast, the cost of doing so becomes smaller the closer the interaction
rate is to the threshold. The result of this is a “missing middle” in the levels of network connectivity
the principal might choose. She either goes all the way down to the critical cut-off, or stays at a
significantly higher level.

To formalize this idea, it is convenient to define 8 = (o) = sup{B: sup, 7(r) > acp — %cz}
This is the highest weight (5) the principal can put on agents’ participation for which she prefers

positive participation in equilibrium. The following result uses S to precisely characterize the

“missing middle”. Figure [ illustrates the intuition for the result.

Proposition 2 (The missing middle). Suppose the principal faces a nontrivial tradeoff (cr, < «)

20T be precise, observe that ¢y (rp(r)) € [0,1] for all r, k. So for r large enough, the —r? term in Equation
must dominate and hence 7(r) < 0. This implies that there is is a compact interval [0, ] such that 7(r) < 0 for all
r > b. Finally, since 7(r) is continuous it must attain a global maximum on [0, b]. Our analysis here relies on the fact
that 1x(rp(r)) is continuous.

21This point implies that if 7 < ¢k, then the principal will always choose r**V°. Since our interest is in studying
the cases where it is possible that the principal faces a trade-off between interaction and participation, we restrict
attention in Proposition |2|to the case where praive > o

naive
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from participation.

(i) If participation is sufficiently costly (B > B), then the principal chooses the highest interaction

rate that does not induce participation (r* = cy).

(ii) If participation is sufficiently benign (3 < ), then the principal chooses an interaction rate

at least d, > 0 above the critical threshold, where dj = % . ’Bgf(jf)

> 0.

Intuitively, if the principal is going to allow nonzero participation in equilibrium, then she
must allow enough to recuperate their losses from moving beyond the critical cut-off—that is, from
allowing it at all. This is what leads to the missing middle. The term dj is then a lower bound on
how far the principal must move up from the critical cut-off to recover her losses.

The missing middle also creates a sensitivity in the principal’s optimal choice of . Although any
equilibrium with positive participation has a lot of participation, small changes in the incentives («
or ) may induce the principal to “jump” from an equilibrium with substantial participation down
to one with zero (or vice versa). To explore this sensitivity, we first describe how the principal’s

equilibrium choice of » depends on these parameters.
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Figure 4: The principal’s equilibrium choice of interaction rate, r. With k =3, « = 10. § =25 in
left panel, and 8 = 15 in right panel.

Comparative Statics. Recall that the principal’s payoff is governed by two parameters: «, her

marginal benefit from agents’ interactions; and S, her marginal cost from agents’ participation.
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A key implication of Proposition [2] is that the principal’s responsiveness to changes in her
objectives is not constant. The effect of a change in the cost of participation (/) depends crucially
on whether her optimal strategy is to suppress participation entirely (8 > f3), or to tolerate it

(8 < B). The following proposition formalizes this sensitivity
Proposition 3 (Comparative Statics and Tipping Points). For any fized o > 0 such that ¢, < «,

(i) If participation is sufficiently costly (3 > ), equilibrium participation is not responsive to

changes in B (22 =0).

(ii) If participation is sufficiently benign (3 < B), equilibrium participation is strictly decreasing
in B (CC% <0).
An analogous threshold & () exists.

Proposition [3] highlights two distinct regimes. When the principal tolerates the behavior in
equilibrium (8 < (), their adjustments are smooth: as 3 increases, the principal reduces the
interaction rate. This, in turn, leads to a reduction in participation.

In contrast, when the optimal strategy is to completely suppress participation (8 > f), the
principal’s choice of r* is “sticky”. Small changes in her incentives are insufficient to move the in-
teraction rate away from the critical cut-off; she continues to choose the highest possible interaction
rate that guarantees zero participation.

The key takeaway from Propositions [2| and [3[is that when 3 is close to 3, a small change in
the cost of participation can move her from choosing an equilibrium with positive participation to
one with zero participation (or the reverse). This highlights a tipping-point phenomenon in the
principal’s decision-making: her strategy, and more importantly the resulting participation, can

shift dramatically in response to relatively mild changes in her incentives.

22We could equally have defined a critical threshold for «, and stated both Propositions [2] and |3| with respect to it.
For simplicity and consistency we have stated these results with respect to 8 as it is the most “novel” parameter of
the model.
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7 Seeding

As a final exercise, we consider what happens when a third party intervenes by “seeding” the
network. Here, we think about seeding “good apples”—that is converting agents into committed
abstainers, who will not participate no matter what their friends do@ As a benchmark, we assume
that seeding converts agents into good apples independently with probability o € (0,1). One
natural interpretation here is that the third party tries to convert all agents into good apples, and
succeeds independently with probability o. Viewed this way, we interpret o as the effectiveness of
the intervention.

The impact that seeding has on the equilibrium level of participation depends critically on
whether it is anticipated by the principal. If it not anticipated, then it will reduce participation
significantly. If it ¢s anticipated, then the principal will respond by increasing the interaction rate.
We show that this still results in a decrease in the overall participation, but by much less than with
unanticipated seeding. This distinction between anticipated and unanticipated seeding is important
for a third party who engages in the seeding with the aim of reducing participation. We now cover

each setting in turn.

Unanticipated seeding. This intervention has two distinct effects on equilibrium participation.
First, there is a direct effect: converting a fraction o of agents into good apples mechanically
decreases participation by that fraction. Second, and more interestingly, there is an indirect network
effect. Agents who are connected to good apples now have fewer participating neighbors, which
may push them below the participation threshold. This can trigger cascading abstention: agents
who stop participating due to their converted neighbors may in turn influence their own neighbors
to stop. The interplay between these direct and indirect effects depends crucially on the network
structure. In sparse networks (when r is small), converted agents may be isolated from one another,
limiting the potential for cascades. In denser networks, the same fraction of converted agents

can trigger widespread changes in behavior through reinforcing local spillovers. Whether seeding

230ne way of thinking about this is as changing the participation threshold for these agents to +oco. We use
“seeding” in the same sense as, e.g/Akbarpour et al.| (2020); |Sadler| (2020), but here the seeded action is a = 0 rather
than a = 1.
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eliminates participation depends entirely on its effectiveness.

Proposition 4. Fiz r >0 and define 0" =1 — <. Then,

(i) Participation is eliminated after the intervention if and only if o > o,

(i) The equilibrium participation after converting o good apples is given by

ayi(r)= (1-o0) -a*( (1-o)r )
~—— —_———
direct effect indirect effect

where @* is the baseline equilibrium participation from Theorem [1]

crit

Notably, there exists a critical threshold o
a discontinuous jump. Because r* is large whenever it is above ¢ (recall the “missing middle”
of Proposition , a large number of good apples is needed to eliminate participation. However,

crit

since o is decreasing in k a higher participation cutoff implies that participation is easier to

dismantle. We discuss the importance of this further in Section [7.1

Anticipated seeding When the principal anticipates seeding, she increases the interaction rate,
r, relative to what it would have been in if seeding were unanticipated@ Both the direct and
indirect effects identified in Proposition [4| cause (a) a reduction in the level of participation, a*, for
any given interaction rate, r, and (b) a “dampening” of the strength of the relationship between
the two—a given increase in r results in a smaller increase in @*. As a result, more effective seeding
(higher o) decreases the marginal cost to the principal from increasing the interaction rate, since
the resulting uptake in participation is not as large as with zero seeding. This is why the optimal
interaction rate increases in the effectiveness of seeding.

However, it is not immediately clear whether this increase in the principal’s choice of interaction
rate overwhelms the direct and indirect effects which work to decrease participation. We show that

the equilibrium participation is decreasing in the effectiveness of seeding, o, even when the seeding

24From the principal’s perspective, unanticipated seeding is identical to anticipated seeding with o = 0. That is,
the principal chooses r as though there is no seeding.
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is anticipated. Write » = r% for the principal’s optimal choice of interaction rate given that she

anticipates seeding o.

Proposition 5. If equilibrium participation is nonzero (v} > ci), then it is strictly decreasing in

g.

Although equilibrium participation is decreasing in o, it is worth noting that this reduction is
muted relative to unanticipated seeding. This is because although overall participation decreases,
the principal still raises the interaction rate. One implication of this is that a third party who wants
to reduce the level of participation would have an incentive to conceal their intention of seeding so

that it is unanticipated by the principal.

7.1 The effectiveness of random seeding.

Complex Contagion. The analysis in this section focuses on seeding to reduce the level of
participation, starting from the maximal equilibrium. A consequence of the analysis is that random
seeding is not very effective for two reasons: (a) seeding a negligible fraction of all agents has a
negligible impact, and (b) highly targeted seeding is much more effective than random seedingﬁ
In a similar complex contagion setting, Jackson and Storms| (forthcoming) consider seeding to
increase the level of participation, starting from the minimal equilibrium (where nobody takes the
action a; = 1). They also find that random seeding is not very effective, in both of the senses above.

Further, |Jackson and Storms| (forthcoming, esp. S4) provide an algorithm that is effective@

Simple Contagion. |Akbarpour et al.|(2020) also consider seeding to increase the level of partic-
ipation, starting from the minimal equilibrium (where nobody takes the action a; = 1), but do so
in a simple contagion environment (in their setting, an agent will take an action if at least one of
his neighbors does so). Importantly, they highlight that (a) randomly seeding even a finite number
of agents can result in a high level of participation, and (b) random seeding with only a few extra

seeds often outperforms highly targeted seeding strategies in this setting. Relatedly, Sadler| (2025)

25Tt is clear from our model that the modest refinement of seeding only agents who are in the k-core (i.e. “targeted
seeding”) is significantly more effective than seeding at random.

26The question of optimal seeding in these environments has attracted significant attention, see for example [Kempe
et al.| (2003, |2005)); Mossel and Roch| (2010), and closer to our setting, |Schoenebeck et al.| (2022)).
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shows that in simple contagion, targeted seeding delivers gains primarily in the subcritical (non-
viral) regime; once the network is viral (i.e. density is past the critical cut-off), random seeding
effectively reaches the giant component and targeting offers only modest improvements among pe-
ripheral, often lower-degree, nodes. Intuitively, this is because participation spread from each seed
to all agents who are indirectly connected to the seed. So reaching even a single seed who belongs
to a large component of the network will have a large impact on the overall level of participation.

In stark contrast, in a simple contagion setting random seeding will be ineffective when trying
to reduce the level of participation (starting from the maximal equilibrium). This is because in
the maximal equilibrium, all agents who have at least one friend will participate. So reducing
participation from the largest equilibrium requires either seeding an agent directly, or completely
isolating them by seeding all of their neighbors. This means that (a) a small number of random seeds
will have a small impact, and (b) carefully targeted seeding can perform significantly better than

random seeding (e.g. targeting “hubs” of local star-like sub-networks to isolate many individuals).

Comparing cases. This highlights an important asymmetry between simple and complex con-
tagion environments when it comes to the efficacy of seeding. In a complex contagion environment
random seeding is never very effective—regardless of whether the seeding is trying to increase or
reduce participation. This is true both in the sense that (a) a few random seeds have little effect
and (b) careful targeting does much better.

In contrast, the efficacy of random seeding in a simple contagion environment depends critically
on whether the aim is to increase or reduce participation. When trying to increase participation,
random seeding is highly effective. But when trying to reduce participation, it is even less effective
than in complex contagions. Again, this is true both in the sense of (a) the impact that a few

random seeds have and (b) the incremental benefits of careful targeting.

8 Conclusion

This paper provides a tractable framework for analyzing complex contagions by leveraging the the-

ory of random graphs. This approach delivers a sharp, analytical characterization of equilibrium
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behavior and associated comparative statics—a task that has been intractable in fixed-network
settings. We show that equilibrium participation is governed by the emergence of the giant k-core,
an object well-studied in mathematics but whose economic implications have remained largely un-
explored. Our primary technical contributions—in particular the concavity of the k-core (Theorem
2)—are, to our knowledge, new results that provide the foundation for our economic analysis.

Our model allows us to capture the subtle ways that agents’ behavior responds to network
connectivity. First, when connectivity is below a critical cut-off, there is no participation at all.
Participation jumps discontinuously just above that cut-off, and then grows in a concave way as
connectivity rises further. The discontinuity implies a minimum critical mass for any behavior to
be self-sustaining, a finding we connect to recent empirical work on social norm “tipping points”.
The concavity implies diminishing effects of raising the interaction rate on participation—a key
economic property that emerges as a direct consequence of the network structure.

Together, these properties of equilibrium participation generate a “missing middle” in the prin-
cipal’s optimal choice of network connectivity. We show she will either choose an interaction rate
(equal to the critical cutoff) that guarantees zero participation or a high one that induces sub-
stantial participation, but never something in between. This, in turn, makes her optimal strategy
fragile: a small change in her incentives can “tip” her from an equilibrium with zero participation
to one with a large, positive fraction of participants.

We adopted a deliberately parsimonious framework to isolate these core mechanisms. As
such, our model abstracts from many rich features of real-world networks. These features in-
clude homophily—the tendency for people to form links with those similar to themselves—and
multiplexity, the idea that there can be different types of links that play different roles. Addition-
ally, agents in our framework do not make endogenous decisions about forming or severing links;
the network structure is determined solely by the principal’s choice of interaction rate and the
resulting realization of the random network. In reality, agents may have some control over both
how many links to form, and who to form them with. Finally, we assume that agents are ex-ante
homogeneous, though their positions (and degrees) within the network differ after its formation.

This was a deliberate choice to isolate the role of the network rather than have our results be driven
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by heterogeneous preferences.

Recognizing these simplifications, we believe these avenues provide a clear agenda for future
research to help better understand complex contagions. Some extensions to our framework are
straightforward; for example, it is relatively simple to extend our model to allow for heterogeneous
participation cutoffs. Others, however, represent a more significant challenge. Incorporating fea-
tures like homophily or endogenous network formation into a tractable random graphs model is
particularly difficult, but remains an important open question. Despite these abstractions, our
framework’s tractability offers a distinct advantage: its conclusions do not require detailed data on
the entire network structure. Instead, the key trade-offs are driven by a single, aggregate parame-
ter: the interaction rate. This should serve as a useful guiding principle for future empirical and

theoretical work seeking to incorporate more sophisticated network features.
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A Proofs

A.1 Notation

It is convenient to begin by fixing notation and stating a number of useful equalities that are used
repeatedly in the remainder of the appendix.
For integers k > 3 and r > 0, let

k
Y (z) = P(Poisson(x) > k), pr(z) = P(Poisson(z) = k) = e*’”%.
Let pr(r) € (0,1] be the largest solution of p = 9,_1(rp) and set
xp(r) = rpg(r), Sk(r) = Yr(ak(r)).
The definition of z4(r) and pg(r) imply
xp(r
(o) = 2 (A1)
We will use the following standard identities (valid for x > 0 and all £ > 1):
V() = pr—1(x), (A.2)
Vr—1(z) = () + pr—1(2), (A.3)
x
pr(x) = - pr-1(2), (A.4)
Pr(z) = pr-1(x) — pr(2). (A.5)
Applying and to the definition of Sk (r) gives
x
S(r) = () = - (wr) = poa (1) = = = proa (). (A.6)

A.2 Proof of Theorem [l

We first state the following theorem.

Theorem A.1 (Pittel et al| (1996)). Let 1y (r), p(r), and ¢ be as in Appendiz[A.1]
(i) The network G(n,r/n) contains a giant k-core with high probability if and only if v > cy,
(i) The size of the giant k-core is given by Vg (rpg(r)).

Since the largest equilibrium in the limit is one in which agents participate if and only if they
are in a k-core (by Remark [I]), it follows that a positive fraction of agents participate if and only
if G(n,r/n) has a giant k-core. Theorem [1| follows immediately. O
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A.3 Proof of Proposition

Let zj; = argmin, d’k%l(x) so that ¢ = ﬁ%xz) It is easily seen that x} = x(ck) = crpr(cr)-

Here we prove that at the critical cutoff cg, the size of the giant k-core is given by

Sk(ex) = Pr(2}) (k = 2).

The result then follows immediately from the fact that the k-core is strictly increasing in r for all
r > ¢y (see Theorem [2).

First, observe that by the first-order condition for z7, we have

Yr-1(2%) — TRk (27) = 0 = Y1 (2}) = 25y (zk)- (A7)

Hence

Sk(cx) = Yr-1(2}) — pr-1(z}) (By
= T (%) — pr—1(2}) (By
= zby_ (23) — Yy (ak) (By
= (k — Dy (a5) — vr(ar) (By
= (k = 2)y(}),

which completes the proof. It can be verified numerically that ¢5(x3) > .27 which gives the lower

bound found in the proposition. O

A.4 Proof of Theorem [2

This is by far the most involved proof in the entire appendix. To make things easier for the reader,
we divide the proof into two parts: first, the proof of concavity in r, second, the proof of (discrete)
concavity in k.

A.4.1 Preliminary Lemmas

We now state and prove four useful lemmas.

Lemma A.1 (Downward propagation in k). zxy1(r) < zk(r) for all k, with strict inequality if
xg(r) > 0.

Proof. Fix r > 0 and k > 3. Define gi(x) = r¢p_1(x) — x for k > 3. Observe that by definition,
x(r) is the largest zero of g;. Hence gx(x) <0 for all x > x4 (r). Moreover, for every x > 0,

g1 (@) = 1 (@) — 2 2 (Yo (@) — pror (@) — 7 = gile) — 7 peoi (@) < grla),

36



with strict inequality for > 0 since py_1(z) > 0. Since gx+1 < gx and both functions ar continuous,
it follows that zy(r) = 0 implies zx11(r) = 0. Suppose now that z(r) > 0.
Evaluating gr41 at xp(r) gives

Ie+1(xk(r)) = g (2 (1)) — rPR—1(2k (1)) = —1pr—1(2k(r)) < 0.

Hence gi4+1 has no zero in [x(r),00), so its largest zero xg1(r) satisfies xp41(r) < z(r). O
Lemma A.2 (Stability at the largest root). At zi(r) we have rpp_q(z(r)) < 1, with strict
mequality if T > cy.

Proof. Let k > 3 and define hy(x) = rii_1(x) — x. Then zx(r) is the largest zero of hy and

hi(2) = 1y (2) = 12 o) — 1.

Because hy(xz) < 0 for all x > x(r) (largest zero), we must have hj (zy(r)) <0, i.e.

rpp—a(ar(r)) < 1.

Moreover, equality holds if and only if xi(r) is a tangential (double) root, which corresponds

precisely to r = ¢ (the minimizer level of z/v;_1(z)). Thus for r > ¢, the inequality is strict.

Remark (index shift). The analogous statement at level k + 1 is 7 py—_1 (zk41(r)) < 1, with strict
inequality for r > ¢gy1. This version is obtained by applying the same argument to hyyi(z) =

rp(x) — . O
Lemma A.3 (Unimodality of pg). py increases on (0,k] and decreases on [k, c0).

Proof. From (|A.5)) we have

P(z) = pr—1(x) — pr(z) @pk(x) (E — 1),

T

Thus pj.(z) > 0 for z € (0, k), p).(k) =0, and pj(x) < 0 for z > k. Hence p;, increases on (0, k] and

decreases on [k, 00). O

Lemma A.4 (Lower bound on x). For all k >4, if r > ¢y, then zy(r) > k — 3.

Proof. Let k > 4. Recall the notation xj = argmin, W%l(m) (as used in Proposition (I} Since
xi(r) = rr(zk(r)) is the largest solution to r = ﬁl(@ it must be greater than the minimizer x3.
Hence it suffices to prove that z7 > k — % for all k& > 4.

Now, x} must satisfy the first order condition

i ()
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The derivative on the left hand side is given by

Yr—1(x) — z¢;_ ()
Y—1(x)? ’

and this derivative is negative to the left of x7. Hence it suffices to prove that

Ve-1(A) < M1 (N),
where A = k — %. To this end, define

P(Po(A\) =k +m —2) AT

™= PPN = k — 2) k+m—2)(k+m—3).. k(k—1)’
so that it suffices to prove

oo
Z Tm < A
m=1

For any m > 3, we have
'm+1 A A

= < 7
T k+m—1"k+2

and since A =k — %, we have %ﬁ < 1. Moreover,
1 B k+2 Ak +2)
X 3\ :

Hence

ir <ri+ro+r3| 1+ A + A 2—1—
et k+1 \k+1) "7

m=1
A A2 N A3 1
k=1 k(k—1) k(k-1)(k+1) 1- 25
A A2 N AN (k + 2)
k=1 k(k—1)  1lk(k—1)(k+1)

So Yoo rm < A is satisfied if

A N A2 N 4X3(k +2) S e 4(k + 2)N\?
E—1 k(k—1) 11k(k—1)(k+1) 11(k+1)

FA—k(k—2)<0.

Substituting A = k — %, we find that the resulting cubic inequality is satisfied for all k > 3.938, and
in particular this implies the lemma holds for all k > 4, completing the proof. ]

Lemma A.5 (Integral bound for decreasing functions). Let f: [a,c] — [0,00) be decreasing and
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let b€ (a,c). Then

[rwws = [

Proof. Since f is decreasing,

c b
[ @< e=nro. wd [ f@de= oo,

Putting these inequalities together gives

c —b b
| s <e=nro < i=_ [ raas,
as claimed. n

A.4.2 Proof: Participation is increasing and concave in r (part (i))

Suppose r > ¢ is the interaction rate so that a non-empty k-core exists with high probability as
n — oo. Recall that we write Si(r) = i (zk(r)) for the asymptotic fraction of vertices in the
k-core. We will show that S}/(r) < 0 for all k& > 3. First, we derive an expression for S}/ (r). During
this step we also show S}.(r) > 0, which proves that Sj is strictly increasing in r. Second, we use

this expression to simplify the conditions required for S}/(r) < 0. Finally, we establish the resultﬂ

Step 1: An expression for S/ (r). For notational convenience write p; = p;(z;(r)) as defined
in Appendix Implicitly differentiating xx(r) = ¥k_1(zx(r))r and using we find that

2h, (1) = Yp—1(xx(r)) + rpr—owy(r) (A.8)

and therefore

_ r—1(m(r))

1 —rpeo

w3, (r)

It follows from Lemmathat the denominator—and hence z}—is positive. Next, substituting|A.1
into Equation (A.9) gives

(A.9)

ag(r) = x(r)r(1 — rpg—2). (A.10)
This equation will be useful later on in the proof. Another useful equation which follows from
is

% = 21.(r) (pr—1 — Pr)- (A.11)

2TWe are grateful to Krishna Dasaratha for sharing the idea for this proof with us. Krishna proved the concavity
of the k-core for k > 12, and by adapting his argument we were able to prove the case for k > 3.
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Next, we compute the first derivative S; (7). By the chain rule, S (r) = x}.(r)y; (zx(r)). Substitut-
ing p = zx(r)/r, into eq. (A.9) and using the fact that ¢} (z4(r)) = px—1, we have

S (r) = Tk (1)Pr—1

r—r2py s
kpy,
- Pk by [A4)
n by D

Again by Lemma the denominator—and hence S} —is strictly positive. This proves that
equilibrium participation is strictly increasing in the interaction rate r.

Differentiating again,

952(7")(2%—1 — i) (r — T2pk—2) — Dk + 2rprpr—2 + 1‘2(7”)7“2 (PkPk—3 — PkPE—2)
(r — r?pr—2)?

SH(r) = k-
where we have used [A11]

Step 2: Simplifying conditions for S}/(r) < 0. We now simplify the conditions required to

prove that S}/(r) < 0. The expression for S}/(r) has the same sign as

2 (1) (a1 — i) (1 — T2D1—2) — Pr + 2r DDz + o (1) (PkPl—3 — PRPE2)-

This simplifies to

2 (r) (r(pe—1 — pr) + 7% (PEPK—3 — Pk—1Pk—2)) — Pk + 27 DkDr—2- (A.12)
We claim first that

(rpr—2)*pr—1ra)(r)
p .

) ()% (DkPr—3 — Pk—1DPk—2) + 2rprDr—2 =

The left-hand side is

/ Coa(r) [2R()T aR ()P ()P () Doy [TR()F ()2
xﬂwﬂe2()[km '(Z—al_(Z—m!'@_1n]+Z“2 ”[k@ =

B e—2xk(r)l,k(r)2k:—3 |:T2£E§C(’r‘) - 7“233;6(7“) 2ra(r) ]
T -1k - 3)! k k-2 ' k(k—2)]
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Substituting eq. (A.10) for z(r), we can write this as

=20k () g (1) 23129 (1) [1 1 21— Tpk—Q)}

&= 1)k —3)! FR—2 T k-2
_ e~ 20 gy (1) 2R 30220 (1) [_ 2 N 2(1 — rpk_g)]
k= 1i(k—3)! RE—2) T Ek(k—2)

6721}“(74).%']@(7’)216737"3.%'2(7)]%72
Kk — 2)!

Expanding pi_o and rearranging terms, we can further simplify this as

2
_€—2xk(r)$k(,r)2k—4r2 . efmk(r)xk(r)kuxk(r)rx;C(74) _ e‘xk(r)ajk(r)k_Qr e—:ck(r)xk(r)k—lrx, (r)
kl(k —2)! (k—2)! (k—2)! k! K
_ (rpe—2)?pr—172}(r)
k )
as claimed. With this simplification in hand, we can write Equation (A.12) as
2
TP _
ray(r) [pkl —Pr— —( D 2]3 Pl — Pk
k—1 k k—1 —xz(r) k
e N 1 () S /1 (O A 2 2k(T) e g (r)
= ey (r) [(k —1)! R k!
e—mk('r)l, r k—1
— ];( ) [kray (r) — rag,(r)ag(r) — (rpr—z)? — z(r)] .

Again we substitute eq. (A.10]) into the last x(r) term, which gives

e‘xk(r)xk(r)k_lrm;(r)
k!

[k — 2p(r) — (rpp—2)® — (1 — rpr—2)] -
This expression has the same sign as

k—ap(r) — (rpr—2)® — (1 — rpp—z) = k — 1 — 24 (r) + rpp—a(1l — rpp—2).
Hence we have shown that S}/(r) < 0 if and only if k — 1 — x4 (r) + rpg—2(1 — rpr—2) < 0.
Step 3: Putting things together. Using the bound z(1 — z) < %, it suffices to prove

k—1—zk(r)+3 <0 thatis, ax(r)>k—

[SY]

41



Lemma [A4] shows that this inequality holds for all £ > 4. The case where k = 3 requires additional
care and we provide the details in Appendix This shows that S}/(r) < 0 for all & > 3,
completing the proof. ]

A.4.3 Proof: Participation is decreasing and concave in k (part (ii))

Fix k > 3 and r > cp41. For notational simplicity, write z = zi(r) and Sk = Si(r) = ¥ (xg). We

first show Sky1 < Sk (monotonicity), then prove the discrete concavity:
Sk+1 — 25, + Sip—1 < 0.

Monotonicity in k. Since r > ¢;y1 we have x; 1 > 0. Hence by Lemma xp > T > 0,
and by (A.3)) we have ¢y11 = ¥y — px. So,

Sk+1 = V1 (Tht1) = Vu(Tr+1) — Pr(Tr+1) < Yr(@r41) < Yr(zr) = Sk,
where the final inequality comes from the strict monotonicity of ¢, (¢, = pr—1 > 0 for all z > 0).
Discrete concavity. First, observe that by definition,
Sk1 = 28k + Sk—1 = Yry1(@rt1) — 29k (vx) + V-1 (Tp-1)-
Consider the expression

Y1 (Tpt1) — 2Uk(Tp41) + Vo1 (Tps1) = Sk1 — 28k + Sk—1 + Gr(x),

where
Gr(z) = 29 (2r) — Yr—1(r—1) — 2Up(@p41) + Y—1(Tp41)-

By (A.3]) and (A.4]), we have

l’k+1>

< 0
k Y

Vi1 (Trt1) — 290k (Tp11) + Yr—1(Tkt1) = Pr—1(Th11) (1 -
where the inequality uses Lemma (k41 > k). So it suffices to prove that G (z) > 0, that is,
Vk—1(zk—1) — 2¢k(2k) < Yr—1(Tpt1) — 290k (Tp41)- (A.13)

To this end, it is convenient to define the differences

A_=xp1— a1 >0, Ay =xp — 2841 > 0.
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From the fixed—point identities zp_1 = riyg_o(xk_1), xx = T¥r—_1(xx) and zx11 = rg(Trs),
together with (A.3)) and (A.2), we obtain the integral identities

A = r(Yp—2(xp_1) — Yp—1(ar)) =7 (/Ik_l Pia(f)di + pk_Q(xk_l)) ’ (B9
Ay = r(Yp-1(xr) — Yr(zrr)) =7 (/xk pr—2(t) dt +pk—1(xk+1)) : (A.15)

By Lemma Tp+1 > k+ i, so in particular 11 > k. By Lemma Pr_9 is decreasing on
[k, 00); hence py_o is decreasing on [rg41, 2k—1]. Therefore

Tk
/ pr—2(t) dt > Ay prp_o(xy), (A.16)
Tk+1
Thk—1
/ pk,Q(t) dt < A_ pk,g(xk). (A.17)
Tk

Plugging (A.16]) into (A.15) and (A.17) into (A.14]) gives

Ay > T(A+ Pr—2(xk) +pk—1($k+1)),
A_ < r(A-pp_a(zr) + pr—2(Th-1)).

Using the stability inequality rpx_o(zx) < 1 (Lemma [A.2)), we may divide by 1 — rpg_o(zr) > 0 to

obtain

Ay (1= rpp—so(zr)) = rpp—1(zrs1), A_(1 = rpp—a(zy)) < rpp—2(Tp—1). (A.18)

Dividing the two inequalities in (A.18) yields a bound on the difference ratio:

A_ < pk_2($k_1) :k‘—l.pk—l(fEk—l) < k-1 < k-1 < 1, (A‘lg)

Ay T opea(Tri) T Peo1(Ther) Th-1 Tkl

where we used (A.4)) and the fact that py_; decreases on [k, 00) (Lemma|A.3)) together with xp_q >

Zp41 > k (Lemma .
Next, define f(x) = r_1(x) — 29k (x). From (A.2) and (A.4)),

1(8) = pralt) = 291 (1) = pra(t) (1 - %)

With u = zg41/(k — 1) > 1, define g = 2;’“%11 —1=2u—1>0. Then, for t > zpi1,

fI(t) < — Bpe—alt).
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Since py_o is decreasing on [zg41,Zk—1], we may apply Lemma which gives the bound

Tp—1 A [Tk
/ Pk—2 < / Dk—2- (A.20)
T A-i— x

k+1

Using (A.19) and (A.20)), we obtain

(Ve—1(xp—1) = 2¢(xr)) — (Vr—1(Trt1) — 20 (Tp41))
— [ Tnamar-2 [ peaw

k41 Thk+1

= /Ik (pk—Q - 2pk_1)(t) dt + /xk_1 Pr—a(t) dt

k+1 T

Ty A Ty
<8 [ maya + 2= / pr_s(t) di

Th41 A+ Th+1
-1y [®
<—ﬁ + > / pr—2(t) dt
Th+1 Tp+41

_,_@U+1Xu—1)/”’m:ﬂﬂdt§ 0.

u k+1

IN

Therefore we have established (A.13)):

Yp—1(xr—1) = 2¢n(rr) < Yp—1(Tps1) — 29Uk (@pp1),

which completes the proof. O

A.5 Proof of Proposition

Suppose that ¢, < a. Observe that r < ¢; cannot be optimal, since ¢; < « implies that profit is
strictly increasing for all r € [0, ¢x]. Hence either r* = ¢ is optimal, or there is some r* > ¢; which
is optimal. By construction, this turns on whether 8 < . It remains to produce a bound on r* in
the latter case.

If r* > ¢, then it must be that:
m(r*) = ar® — Byi(pr )—5(7’ ) >OéCk—§Ck:7r(ck).

By Theorem [2| the size of the giant k-core at pr* is greater than its size at emergence. Using p. as

defined in Proposition [1| this implies 9, (pr*) > ¥ (x}), where 2} = cxp(cx) and so

1 1
ar® — Byp(zr) — i(r*)2 > aep — §Ci
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Suppose 1" = ¢, + €. We will derive a nonzero lower-bound for €. The inequality above becomes

1 1
alck + €) — Bug(ay) — 5(02 + 2cpe + €2) > acy — ici

= 2@ (0 et plal) <O

Completing the square gives us the lower bound

e> 20— i) — /4 (0 — ) — 2B0(x).

which is strictly positive because ¢ < « is a necessary condition for 7* > ¢ to be a maximum.
Noting that this bound has the form z — v22 — a, we can use the difference of two squares to

(x — Va2 +a)(x+ Va2 +a) a

a
> =,
r+ Va2 +a r+Vat+a

rewrite this as:

from which we conclude that

- Bok(zy) 1 B¢Yk(zy)

= 0.
20 —ci) 2 a—cg ~

1 B¢k (x5)
2 a—cp

Putting di = gives the proposition O

A.6 Proof of Proposition
Fix a > ¢}, and take 3 < . Proposition [2{ implies the principal’s optimum satisfies r* > ¢;. Let
b(r) =a'(r) = 4y, (rp(r)) [p(r) +rp'(r)].
Note that b(r) > 0 by Theorem [2| The principal maximizes
_ 1,
w(r,8) = ar - fa(r) ~ or
and, because r* > ¢, the optimum is interior and characterized by the first—order condition
F(r*,p) =0 <= a—pb(r*) —r* =0, (A.21)

where we define F(r,§) = %.

28 Additionally, it is fairly straightforward to use this same method to obtain the upper bound e < 4 (a—cx),
although we did not find this bound to be particularly useful.
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Step 1: sign of dr*/dS. Totally differentiating (A.21) with respect to S yields

dr* dr* Fg(r*, )
F, 7‘*,5 —— + F T*7/8 =0 = T 4o s A
") g + U0 g~ F(r.B)
where F(r*, ) = —b(r*) < 0. For the denominator, the second order condition for a maximum

requires that F,(r*, 3) < 0. Hence both the numerator and denominator are negative, so

dr*
ag

< 0. (A.22)

Step 2: sign of da*/df. Using the chain rule,

da* ey drt . ar®
5 :a(r)dﬁ —b(r)dﬁ.

Because b(r*) > 0 and (A.22)) gives dr*/dfS < 0, we obtain

da*
ap

< 0.

Finally consider the case where 8 > . By Proposition [2 7* = ¢, and hence a* = 0. By
continuity of 7, small changes in 3 leave the optimum at ¢, so da*/df = 0.
Thus equilibrium participation is unresponsive to § when the principal chooses the cut-off

(8 > B) and strictly decreasing in 8 when she tolerates participation (8 < 3). An identical

argument, replacing 8 with «, yields the analogous threshold @. O

A.7 Proof of Proposition

If the principal’s intervention has effectiveness o, it acts as site percolation with retention probability
1 — 0. By (Van der Hofstad, 2023, Thm 3.7) the surviving network has distribution G(no, (17‘7)7”)

n

and hence has expected degree ' = r(1 — o).

Part (i): By Theorem [l (i), the equilibrium participation is positive if and only if 7’ > ¢, i.e. if
and only if 0 <1 — %,

Part (ii): Ifr’' > ¢, then by Theorem[l] (i), among the (1—0) surviving vertices, the the fraction
in the k-core is @*(r') = ¢y (' p*), where p* is the largest solution in [0, 1] to p* = ¥i_1(r'p*).

To determine the overall prevalence, consider choosing an agent uniformly at random from the
original n. With probability ¢ that agent was converted to a good apple, and plays a = 0 with
certainty. With probability (1 — o) that agent was not persuaded, in which case his probability of
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participating is just the probability that he is in the k-core among the surviving vertices: a*(r’).

Hence by the law of total probability,

aseed(r) _ (1 _ 0‘)6*((1 — U)T)

g

which completes the proof. O

A.8 Proof of Proposition

Throughout this proof we continue to write Si(-) for the size of the giant k-core as a function
of the Erdés-Rényi mean—degree parameter (cf. Appendix [A.1)). Under seeding with effectiveness

o € [0, 1), the principal chooses r > 0 to maximize
w(r;o) = ar — %TQ —B(1—0)S((1—0o)r),
and the equilibrium participation among the original population is
a*(o) = (1—0)Skz*(0)), (o) = (1 —0o)r* (o).

Write ¢, (-) = pm—1(-) and recall the identities listed in Appendix in particular, ¥;_1(xg) =
zy/r at the relevant fixed point (A.1)) and pj(A) = pj—1(A) — p;j(A).

Step 1: FOCs in r and in effective connectivity z. Let 2 = (1 — o)r. The objective can be

written as

« $2

M) = 157~ 50— oy

— B(1 = 0)Sk(x).

An interior optimum x* (o) > ¢}, satisfies either of the equivalent FOCs

a—1*—B(1—0)2S(z*) =0, A.23)
a(l—0o)—a* = B(1—0)3Si(z*) =0 (A.24)

The SOC is
M (x;0) = — ! 5 —B(1—-0)Si(z) <0 < D(o) = 1+5(1- U)3S,Z(x*) > 0. (A.25)

1=0)

Step 2: The optimal r* strictly falls with ¢ in the interior. Totally differentiating (A.23)
with respect to o and using z* = (1 — o)r* and dz*/do = —r* + (1 — o) dr* /do yields
dr* B(1 — o) O(z*)

= by Ouw) = 25 +as]() (A.26)
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By the SOC, D(c) > 0. Hence the sign of dr*/do is the sign of ©j.

Step 3: Equilibrium participation strictly falls with ¢ in the interior. Differentiate

a*(o) = (1 — 0)Si(z*(0)):

da* N N . dr*
= —Si(z*) + (1= 0)Sp(z*) |—r* + (1 — o) |

Substitute (A.26]) and use the FOCs (A.23)—-(A.24) to eliminate 7* and « (multiply (A.24)) by S} (z*)
and subtract (1 — ¢)S},(«*) times (A.23)). This gives the clean decomposition

da*
do

B -o)

3
= — (Sk(m*) + a:*S,'C(x*)) + D(o) Sp(@®) (28},(z*) + z* Sy (")) . (A.27)

>0 =0 (z*)

Because S, > 0, S;, > 0 on (c,00) (monotonicity in 7; see Theorem , and D(o) > 0, it follows
from (A:27) that if O4(z*) < 0 then 9 < 0.

Step 4: A compact sign identity for O and its sign. Write t = t(x) = x p with p = ¥g_1(t)
(so t is the largest fixed point corresponding to the giant k-core when the mean degree is x). A
routine implicit-differentiation calculation using v;,_; = pr_2 and p;» = pj_1 — p; yields the exact

identity

Oplz) = — PP ®) =) =35m0 | (A.28)
z (1 —zpr_a(t)) p

At the relevant (largest) fixed point we have 1 — z pg_o(¢) > 0 by Lemma (applied with mean

degree x), so the prefactor in is strictly positive. Hence the sign of O (x) is the sign of the

bracket.

Large k. For any interior & > ¢y, the associated fixed point satisfies t > 3, where x} is the
unique minimizer of z/y,_1(z) (standard fixed—point geometry; cf. the proof of Theorem [2). The
argument used in Lemma to show x3 > k — % can be tightened (with the same telescoping ratio
bound) to yield@

zp >k+1  forall k> 12,

Consequently ¢t > k 4+ 1 at every interior x > ¢, when k£ > 12, and the bracket in is strictly
negative (the first term is < 0 while the second is > 0). Thus ©(x) < 0 on the entire interior
region for all £ > 12.

Small k. For the finitely many cases k € {3,...,11} one can verify directly (using
together with Lemma that the bracket is negative at the interior fixed point ¢t = t(z) for all

29This strengthening follows by running the same computation as in Lemmawith A = k+1 (rather than k — %)
and observing that the resulting polynomial inequality is positive for all integers k > 12. We omit the repetitive
algebra.
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x > cg. This yields O (z) < 0 on the interior also for these k.

Combining the two cases, O(x) < 0 whenever x > ¢y,

Step 5: Corners. If 2*(0) = ¢; (the “hold—at-the—cutoff” corner), then Si(cx) = 0 and hence
a*(o) = 0 with Cfi‘? =0. If (1 —0)a < ¢ (the “always safe” region), then r*(0) = «, z%(0) =
(1 —0)a < ¢, so again a*(0) = 0 and % =0.

Putting the pieces together: by (A.26]) and (A.27), Ok (z*) < 0 implies dr*/do < 0 and da*/do <
0 at every interior optimum; in the two corner regions the derivative of a* is 0. Therefore, whenever

equilibrium participation is nonzero (equivalently, x*(o) > ¢ ), it is strictly decreasing in o. O
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B Online Appendix

B.1 Micro-founding the largest equilibrium

In Section {4 we assumed that agents play the largest equilibrium in the second stage (i.e. the
one where the most agents take the action a; = 1). Focusing on the largest equilibrium is a
natural benchmark, because (i) it provides a worst-case scenario for the principal, and (ii) the
other extreme—the smallest equilibrium—is trivial. The smallest equilibrium always involves no
participation.

Here, we also show two different ways of micro-founding our focus on the largest equilibrium.
In the first, agents boundely-rational (“unsophisticated”) and play myopic best responses. In the
second, agents are fully rational (“sophisticated”) and reach equilibrium using only local information

and a short communication phase.

Unsophisticated Agents: Myopic Best Response Dynamics

Set-up. Suppose that the game is now played over n + 1 periods. At ¢t = 1, the principal chooses
r > 0, and Nature realizes the graph G (as in our baseline model). Additionally, at ¢ = 1, all agents
participate non-strategically (i.e. a;y—1 =1 for all 7). In each subsequent period ¢ > 2, all agents
best respond myopically to actions in the preceding period ¢ — 1. Agent i’s action in period t > 2,

a;; in the game '™ is thus determined by the best response

(n) L, if My 1>k
BR;} (M;-1) = (B.1)
0, if Mi,tfl <k,

where M; ;1 = Z#i Gijaji—1. For convenience, we use a; = a;,+1 to denote ¢’s action in the final
period of the game. And we assume that the principal cares about participation at the end of the

game—not during it.

The result. Exactly as in our baseline model, the unique limit of the above dynamic process
is that each agent participates if and only if they belong to the k-core of the graph G. In other
words,Remark [1f holds unchanged.

Discussion. In addition to myopia, this set-up assumes that all agents start off by participating.
From a technical standpoint, it guarantees convergence of the best response dynamics to the largest
equilibrium of the static game. The logic of how it works is very similar to that laid out after
Remark [[}—the only difference is that agents are updating myopically, rather than doing analogous

reasoning in their head.
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Economically, this set-up imposes a = 1 as the pre-existing default option. So this myopic updat-
ing view is best fits settings where the principal wants to eradicate or reduce pre-existing behaviors.
This is very natural when considering adoption of new technologies or new social norms—the new
versions simply did not exist before the start of the game, so everyone must therefore have been
using the old technology or old norm. Note that in this interpretation, our terminology of ‘partic-
ipate’ or ‘abstain’ becomes less clean—participate’ would mean to use the old technology/norm,
and ‘abstain’ would mean to use the new one.

Relatedly, assuming myopic best responses effectively rules out coordination between agents.
We contend that this is another reason why focusing on the largest equilibrium provides a useful

benchmark.

Sophisticated agents: local communication

Suppose that agents start in a “communication phase” that lasts n + 1 periods, followed by an
“action phase” at t = n + 2. At t = 1, the principal chooses r > 0, and Nature realizes the graph
G. In each period ¢t > 2 agents observe only (i) how many neighbors they have and (ii) what each

of those neighbors announced in the previous period.

Communication phase (2 < t < n+ 1). During the communication phase, every agent i
announces a cheap talk message m;; € {P, A}, interpreted as “I Plan to participate” or “I will

Abstain”. Suppose agents adopt the rule:

A if strictly fewer than k& neighbours sent P at t — 1,
mgt =

)

P otherwise.

We assume all agents start with m;; = P.

Action phase (t =n+2). Consider the strategy s; given by: play a; = 0 if i ever sent A during

the communication phase, and play a; = 1 if 4 sent P in all n rounds of the communication phase.

The result. The message rule implements the usual k-core peeling process: after (at most) n
periods, no further A’s are sent and the only agents who still announce P are the vertices in the
k-core of G.

Given the strategy s; for the action phase, any agent who still announces P in the final commu-
nication round has at least k£ neighbors who also announced P. These agents will therefore choose
a = 1 in the action phase. Hence playing a; = 1 is a best response for every agent who announces
P at time n + 1, that is, for every agent in the k-core. Similarly, any agent who sent A expects less
than k of their neighbors to play a = 1, and therefore their best response is to play a; = 0. Thus

s = (8i)ien is a Nash equilibrium of the action phase.
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In the communication phase, no agent can profit (in any period) by unilaterally deviating from
the message rule. Sending P when the rule prescribes A cannot push the number of remaining P-
neighbors back to k, so it cannot raise the deviator’s final payoff. Sending A when the rule prescribes
P only removes an agent from the set of potential participants and therefore strictly lowers his payoff
if he was in the k-core. Therefore the prescribed message profile m = (m;¢)ien1<t<n+1 is itself
incentive-compatible.

Consequently, (m,s) is a Nash equilibrium in every subgame and therefore a subgame-perfect
equilibrium of the entire game. The agents who play a; = 1 in the terminal period are exactly
those in the k-core of G.

Discussion. Agents here are fully rational and use the communication phase to perform the same
k-round elimination that the “unsophisticated” agents achieve through myopic play. Crucially, each
agent needs only local information: his own degree and the most recent messages of his neighbors.
The procedure demonstrates that the k-core offers a natural characterization of equilibrium even

when agents are fully sophisticated, as in our baseline model (see Remark .

B.2 The Discontinuous Emergence of the k-core: Intuition

Suppose we choose a participating vertex at random in the graph and follow it to one of its neighbors,
say i.

Consider the k = 2 case. For i to be part of a group which sustains the behavior, we only need to
find one other participating neighbor. This is a relatively weak requirement— it allows for a small
cluster of agents to be self-sustaining. If the hypothetical fraction of participants in the network
is very small (say, p), an agent’s chance of finding at least one participating neighbor is also small
(roughly proportional to p). This allows for a stable outcome where a tiny fraction of agents can
mutually sustain each other, and this fraction grows continuously as the network becomes denser.

Now, consider the k = 3 case. For ¢ to be part of a group which sustains the behavior, we need
to find two other participating neighbors. Because the probability of finding multiple participating
neighbor compounds, this is a much stronger requirement. If the fraction of participants p is very
small, the probability of any given agent finding two participating neighbors is drastically smaller
(roughly proportional to p?). A tiny self-sustaining group is therefore impossible; the demanding
requirement for participation cannot be met if the pool of potential supporters is itself vanishingly
small. The system cannot be “born small.” For a k-core with k > 3 to exist at all, the network
must already be dense enough to support a large concentration of participants, leading to the
discontinuous jump from zero to a substantial fraction of the population.

This logic can be formalized through branching process approximations of the local network

structure.
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B.3 Equilibrium is Generically Unique

By Proposition [2], there are two possible equilibria: r* = ¢, or r* > ¢ + di. Note that since profit
is strictly decreasing for all » > «, any maximizer of the profit function must belong to the interval
[cx + di, o

Since 7 is continuous, it attains a global maximum on this compact interval. Moreover, since
¥(+) is analytic and p(r) is analytic, so is 7. In particular 7’ is also analytic (and not identically
0). An analytic function that is not identically zero has only isolated zeros, and therefore 7’ must
have only finitely many zeros in [cx + d, a.

Thus the set

ArgMaX,.clcy +-dy,al W(T)

is both nonempty and finite.

Now suppose that there are two distinct maximizers r] < r3. Consider what happens when we
decrease [ slightly. Since r3 > r}, it follows from theorem [2| that Sy(r}) < Sk(r3). Hence for any
€ > 0, this implies

arf — %(ﬁf — (B = )Sk(r}) = (ari - %(ri‘)Q - ﬂSM)) +eSi(r1)
—arg - %@;)2 — BSK(r3) + eSk(r})
< ard — %(@)2 — BSk(r5) + eSk(r3),

and so 75 emerges as the unique maximizer. Since 7 is continuous in 3, we can always perturb it
by some small enough € such that another “new” maximizer does not appear.
A similar argument can be made if both r] = ¢ and 75 > ¢, are maximizers. So equilibrium is

generically unique.

B.4 Concavity when k=3

In appendix we showed that S} (r) has the same sign as

2 (1) (pp—1 — pr) (1 — 72pp_2) — P + 2rpepr—2 + Ty (1)1 (PrDPE—3 — DRDE—2)-

Substituting £ = 3 and using the identities:

w3(r) = 23(r)(r — r’p1)

e T2
6

po—p1=e (1 —x),

P2 —p3 = (3—x)
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we see that S%(r) has the same sign as

e T3 (T)ZL‘3 (7”)2

—xz3(r)
(3 25(r)) — 1+ 2rpy + “””3“] .

1—rp

Let t =1 —rp; = 1 —ras(r)e (). Then since w =1=2 _ (1 — 1), the terms in the square

brackets above can be rewritten as

(3= as(m) + (—1—201— 1) + 2220 ey =3 <2t+$3(7“2—1> ,

so it suffices to prove that

(o 201 .

for all r > ¢3. We prove this in cases.

Case 2: x3(r) € [z3(c3), ). Numerical methods show that z3(c3) &~ 1.79. So it suffices to prove

the claim for z3(r) € [Z, 7].

178
Since, in equilibrium, r = wizg&)), we have that ¢t = t(z) = 1 — r(z)p1(z) can be written as

l—e*(1+az+2?) 1-—e(1+az+a?)

Hw) = b2 () Tl e=(lta)

Differentiating with respect to x gives

t,(:v) _ e*wx((x - 1)¢2($) - [1 — e*I(l + x4+ xZ)]) _ efxx((x . 2) + €7I(2 n w))
T,Z)z(l‘)2 ¢2(m)2 .

The sign of ¢ therefore depends on g(z) = (z — 2) + e *(2 + x). Since g(0) = 0, and ¢'(z) =
1—e (14 x) >0, it follows that ¢ is increasing for all 2 > 0. So for z € [, 1],

1= e T8 (1417 4 (112)

< t(L) = ~ 0. L
t(x) < t() =y ey 0.140 < 3
Hence ) T
xr — T — —
2t > > —
@O 2w = g

which proves case 2. Hence S(r) < 0 for all r > ¢3, as claimed.
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