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Learning with Feedback Loops

Many learning processes have the 
potential problem that realizations of the 
data affect the data generating process 
itself.


This is true of all recommendation 
platforms:

• Search engines recommend high-
traffic websites.


• Social media platforms promote 
content with high engagement.


• E-commerce platforms highlight 
bestselling products.


• Streaming services prioritize popular 
movies.


• Large language models generate 
answers based on information in the 
training data.

Motivation Model

• I develop a model of intermediated social-
learning.


• There is an unknown state of the world 



• Players: A long-lived platform and short-
lived agents 


• In period  


• Platform provides a recommendation 
 to the agent, which is 

implemented by an algorithm.


• Agent observes an exogenous signal 
 and chooses an action 




• The platform observes the action of the 
agent but not the signal.

θ ∈ {L, H} .

1,2,…

t :

Rt ∈ {0,1}

st ∼ Fθ

at ∈ {0,1} .

My website!

Key question #1: What are the 
implications for learning if the 
platform fails to account for the 
feedback in the data-generating 
process?


Key question #2: If learning fails, 
how sophisticated must the 
algorithm be for learning to occur?


• I characterise Bayesian Nash equilibria of 
the game.


• An equilibrium strategy for agents must 
satisfy:





• Say that asymptotic learning occurs (in 
equilibrium) if





    and that learning fails otherwise.

αt(Rt, st) ∈ arg max
a

𝔼t[ut(a) ∣ Rt, st] .

lim inf
t→∞

ℙ(θ = H ∣ Rt, st) = 1.

Proposition 1 (Failure of learning)


Under a naïve recommendation platform, 
learning fails.

Proposition 2 (Sophisticated algorithms)


Under a Bayesian recommendation 
algorithm, learning occurs. Moreover, there 
are less sophisticated algorithms under 
which learning occurs.

Corollary 1 (Mass of mistakes)


If the platform recommends  and 

then the limiting fraction of agents 
who take the incorrect action is 

R∞ = 0
θ = H,

ℙ(st ≤ π) = FH(π) .

• Agent  receives a payoff of  if their action 
matches the state, and  otherwise,


 


• where  and 


• The platform's objective is such that it 
prefers for the algorithm to make truthful 
recommendations.

t 1
0

ut(at) = 𝕀[at = aθ],

aL = 0 aH = 1.

 Motivation  Model  Results

Key questions Utility

Intuitively:


• Asymptotic learning can occur iff the 
platform eventually “learns” the true state 
with certainty.


• The platform does not properly correct for 
“contradictory” behaviour  failures can 
persist even when agents’ information is 
arbitrarily good.

⟹

Intuitively:


• The fraction of agents who play the 
incorrect action are the fraction who 
observe signals which are “not convincing 
enough” given the platform’s 
recommendation.

Intuitively:


• If platform is fully Bayesian, learning 
occurs for “standard reasons”.


• A full characterisation depends on what 
we allow the platform to communicate.

Recommendation algorithm

• A recommendation algorithm is a rule 
for generating recommendations as a 
function of:


• The history of actions , and


• The history of recommendations .


• I focus on algorithms for which the 
subjective belief is a sufficient statistic for 
the recommendation rule.


• A naïve recommendation platform is 
one whose subjective belief does not 
account for the effect of 
recommendations on learning from the 
data.

At

Rt

Equilibrium

 Results


