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Abstract

The study of random graphs has become of central importance in both combina-

torics, and mathematical modelling of real-world networks. Suppose that you have

a coin which, when flipped, lands on heads with probability p ∈ [0, 1], and tails

with probability 1 − p. Given a set of n vertices, construct a graph on them as

follows. For each possible edge between the n vertices you toss the coin, including

that edge in the graph if the coin lands heads. Such a construction is called the

binomial random graph and its asymptotic properties (as n → ∞) have been well

studied when p = p(n) is a sequence of probabilities depending on n. In this thesis,

we present the proof of the classic result that p = 1/n is a sharp threshold for the

emergence of the giant component in the binomial random graph. We then turn

to the question of whether such a threshold exists in graphs where the degree of

each vertex is specified. To generate graphs with specified degrees, we use an algo-

rithm known as the configuration model. Using the configuration model, a simple

condition is presented for the existence of the giant component in simple graphs

and multigraphs with an arbitrary degree distribution. The study of graphs with

arbitrary degree distributions can be done in two ways, referred to as “canonical”

and “microcanonical” ensembles. We discuss both the canonical and microcanoni-

cal ensembles, obtaining an exponential bound on the deviation of component sizes

from the extinction probabilities of branching processes. This concentration re-

sult is derived within the canonical ensemble, and coalesces ideas from physics and

mathematics. Finally, we look at a recently developed model of information cas-

cades on networks. We analyse the model in light of our work, and suggest some

avenues for future research.
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Chapter 1

Introduction

The theory of random graphs was introduced by Erdős & Rényi in 1959 [18, 19]

and its study has become widespread among combinatorialists, physicists, and

economists since. A key goal of Erdős & Rényi was to understand how the struc-

ture of a random graph changed as one varied the expected number of edges in the

graph. In particular, they studied the size of connected components of the random

graph. In this pursuit, Erdős & Rényi discovered a remarkable “double-jump” in

the size of the largest component, the order of which increased from O(log n) to

O(n2/3), and then to O(n), as one increased the expected number of edges in the

graph. The component of size O(n) was appropriately called the giant component.

The intricacy of the graph defined by Erdős and Rényi became immediately appar-

ent to the mathematical community, and as such, random graph theory is still a

major area of interest.

There were two directions in which researchers proceeded from the results in [18,19].

The first direction was to analyse the subtle changes in component size associated

with the double-jump, a question which was finally settled by  Luczak [38]. The

second direction was to dream up new types of random graphs, and see whether

one observed the same behaviour in the component sizes. A very general model of

random graphs known as the configuration model was developed independently by

Bollabás and Wormald [8, 57]. It was proved by Molloy & Reed [42, 43] that this

model did in fact display the same behaviour as the simple model developed by

Erdős and Rényi.

Ever since these major development in the theory of random graphs [8, 42, 43, 57],

many improvements and alternative proofs have been offered to the results of [42,43].
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Due to its remarkable overlap with a field of research in physics known as percolation

theory, physicists have offered several contributions to the field of random graphs.

We look at a key contribution of physicist M. Newman [47] to the results of [42,43].

The authors of [18, 19] used both combinatorial and probabilistic arguments to

prove their results. As the field of probabilistic combinatorics has emerged, the

theory of random graphs has demanded a broader skill set than probability and

combinatorics alone. Indeed, many techniques used in random graph theory today

draw on deep results from measure theory, functional analysis and even complex

analysis. Among the development of these new tools in random graph theory, older

tools such as probability generating functions and branching processes [54] have re-

emerged, demonstrating themselves to still be useful for proving results which are

at the frontier of research. This thesis focuses primarily on these classical methods

and their use in proving recent results.

The model developed in [8, 57] turned out to be extremely useful for describing

real-world networks. A field of study emerged which looked at processes occurring

on networks. This has been particularly important in recent economic research.

The modern study of economics is built on models: simplified mathematical descrip-

tions of reality that capture important details of interest. With the growing empiri-

cal evidence that networks of relationships play a key function in economies (see for

example [44]), economists have found themselves needing more advanced techniques

to model the formation, effects, and efficiency of complex networks [30]. A major

question in studying the effects of networks on economics is what kind of processes

occur in a network, and how can we model them precisely? This is a question of dif-

fusion on networks. Models of diffusion which do not incorporate network structure

have been around since the 18th century.

One of the earliest models of diffusion was developed by Bernoulli after controversy

broke out in France with regards to inoculation against smallpox [16]. Various

models of disease transmission have been developed since Bernoulli, (see [20] for a

history of such models), though many of the models developed did not take into

account any explicit network structure.

A major breakthrough in the study of diffusion was the Susceptible-Infective (SI),

Susceptible-Infective-Susceptible (SIS), and Susceptible-Infective-Removed (SIR)

models, originally designed to describe the spread of infectious diseases [4]. These
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models were able to explicitly capture aspects of the structure of the network on

which the diffusion took place. These have become particularly important in recent

times, with viral bacterial infections known as “superbugs” poised to become the

biggest worldwide cause of death by 2050 [53]. Newman, the author of a heuristic

argument [47] which we will look at in Chapter 4, has an excellent paper on SIR

models of diffusion, which uses exactly the same methods which we apply in Chap-

ter 4. Watts, a co-author of [47], used these same methods to develop a model for

the spread of information on networks which addressed an important class of prob-

lems in economics known as binary decisions with externalities [51]. Watts called

his work “a simple model of global cascades” [55], and the study of information

cascades on networks was born. Models of information cascades have important

implications for the success of marketing campaigns [36], the spread of rumours [6],

the spread of new products and services [37], and even in improving welfare in

developing countries [5].

In this thesis, we will introduce the fundamental ideas and results established in re-

lation to the emergence of the giant component in random graphs. We will begin in

with the necessary definitions and notation needed to understand the methods used

in the thesis (Chapter 2), before providing an introduction to branching processes

and proving the main results of Erdős and Rényi (Chapter 3). We then generalise

the main result of Chapter 3 to graphs with an arbitrary degree sequence (Chap-

ter 4). Finally, we look at an application of our research to models of information

cascades, and suggest some avenues for future research (Chapter 5).
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Chapter 2

Background

We now present several important concepts and definitions which will be pertinent

to the results of this thesis. The main references for this chapter are Diestel [15,

Chapter 1] for Section 2.1, Janson,  Luczak & Rucinski [32, Chapter 1] for Sec-

tions 2.3, 2.4, 2.4.1 to 2.4.4 and 2.5 and Frieze & Karoński [22, Chapters 21, 22]

for Sections 2.2 and 2.6 respectively.

2.1 Graphs

The most fundamental construct throughout this thesis will be the idea of a graph.

We make a few notes on notation before presenting some definitions. We denote the

natural numbers, positive integers, real numbers, and complex numbers by N, Z+,

R, and C respectively, and we write [n] for the set of the first n positive integers

{1, 2, . . . , n} ⊆ Z+. Given a set X, and a positive integer k ≤ |X|, we denote by
(
X
k

)
the set of k-element subsets of X.

Definition 2.1. A graph is a pair G = (V,E), where V is a finite set, and E ⊆
(
V
2

)
.

To avoid ambiguity, we will always assume tacitly that V ∩E = ∅. We will say that

a graph G = (V,E) is a graph on V . The elements of V are called the vertices of

the graph, and elements of E the edges. Generally we will deal with the case where

V = [n]. We usually write ij for an edge {i, j} between vertices i and j in V . Given

a graph G = (V,E), we say that two distinct edges ei, ej ∈ E are incident if there

exists v ∈ V such that v ∈ ei and v ∈ ej, that is, ei and ej share a common vertex.

We say that two distinct vertices vi, vj ∈ V are adjacent if vivj ∈ E, that is, if there

is an edge between vi and vj. If vi and vj are adjacent we call vj a neighbour of vi.
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Definition 2.2. The degree of a vertex v ∈ V , denoted degG(v), is the number of

edges which are incident with v in G. That is,

degG(v) = |{e ∈ E : e is incident with v}|.

When it is clear which graph we are referring to, we simply write deg(v) rather than

degG(v). In a simple graph, as defined in Definition 2.1, a vertex can have degree

at most n− 1. Instead, one could define a multigraph.

Definition 2.3. A multigraph is a pair (V,E) of disjoint sets (of vertices and edges)

together with a map E → V ∪
(
V
2

)
, assigning to every edge either one or two vertices.

If e 7→ v, then we say that e is a loop at v, which is an edge from v to itself.

In both graphs and multigraphs, two vertices i, j ∈ V have an edge between them

if and only if there is an edge between j, i ∈ V . One obtains a directed graph

by placing an orientation on the edges of a graph G = (V,E), such that an edge

ij is distinguished from edge ji. We also note that the vertices of a graph are

distinguishable from each other since they come from a set. This property defines

a labelled graph.

Remark 2.4. All graphs throughout this thesis will be assumed to be simple,

undirected, and labelled in accordance with Definition 2.1.

We will need to know a few other basic concepts in order to understand the analysis

of random graphs later on. We present some fundamental definitions below.

Definition 2.5. Let G = (V,E) be a graph. A subgraph of G is a graph H = (W,F )

such that W ⊆ V and F ⊆ E.

Definition 2.6. A path on G is a sequence of distinct vertices (v0, v1, . . . , vk) with

k ∈ N, such that vivi+1 ∈ E for i = 1, 2, . . . , k− 1. The length of this path is k (the

number of edges).

One can think of a path in the natural way as following a series of edges from one

vertex to another, that is, following incident edges to adjacent vertices. Adding an

edge joining the endvertices of a path of length ≥ 3 gives a cycle.
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Definition 2.7. A cycle on G is a sequence of vertices (v1, . . . , vk, v1) such that

(v1, . . . , vk) is a path, and vkv1 ∈ E. The length of the cycle is k.

It is useful to define a notion of distance on a graph. This is done in the natural

way.

Definition 2.8. Let v, w be distinct vertices in a graph G. The (graph) distance

between v and w, denoted dG(v, w), is the length of the shortest path between them.

If there is no path between v and w then we set dG(v, w) =∞.

We use the above two definitions to introduce the notion of connectedness of a graph.

We also define components of a graph, which will be essential to the statement of

our main theorems.

Definition 2.9. A graph is G = (V,E) is connected if there is a path from v to w in

G, for all v, w ∈ V . Equivalently, G is connected if dG(v, w) <∞ for all v, w ∈ V . A

maximally connected subgraph of G is called a component (or connected component)

of G. Components are nonempty.

A connected graph without any cycles is called a tree. Trees will be an important

object of study when we locally approximate the structure of a random graph

(see Theorems 3.10 and 3.11 and Lemma 4.12).

Next, we introduce some basic probability theory and asymptotic notions before we

introduce the main objects of study in this thesis, random graphs.

2.2 Probability

We use Bin(n, p), Be(p), Po(λ), and N(µ, σ2) to denote the Binomial, Bernoulli,

Poisson, and Normal distributions respectively. We write X ∼ D to mean that X

is a random variable with distribution D, (for example, X ∼ N(0, 1)). We begin by

introducing the standard notions of conditional probability, discrete random vari-

ables, conditional expectation, and independence. We will write P for probability.

Definition 2.10. Let A and B be two events defined on the same probability

space Ω. The probability of A given B, is defined by

P(A | B) =
P(A ∩B)

P(B)
.
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We will only need to work with discrete probability spaces in this thesis. Hence

when we write Ω for a probability space, we really mean the triple (Ω,F ,P), where

F = 2Ω is the set of all subsets of Ω and P : F → [0, 1] is a probability measure.

Definition 2.11. A discrete random variable is a function X : Ω → E, from a

countable sample space Ω to a countable set E. A discrete random variable can be

described entirely in terms of its probability mass function (p.m.f.) fX : E → [0, 1],

which is defined by

fX(k) = P(X = k) = P({ω ∈ Ω: X(ω) = k}).

Definition 2.12. Let X be a discrete random variable, and let H be an event,

with both X and H defined on the same probability space Ω. The expectation of

X given H, is defined by

E(X | H) =
∑
k∈H

kP(X = k | H).

Definition 2.13. Two events variables A and B defined on the same probability

space (Ω,F ,P) are said to be independent if P(A | B) = P(A).

An important case of the above definition is when one has two random variables X

and Y on Ω. Then the events “X = x” and “Y = y” are independent if

P(X = x | Y = y) = P(X = x).

A sequence of random variables {Xn}n∈N is independent and identically distributed

(i.i.d.) if Xn has the same probability distribution for all n ∈ N, and Xn is inde-

pendent of Xm for all n 6= m.

We denote by 1[E] the indicator function of the event E , which equals 1 if event E
occurs and 0 otherwise. We will often consider random variables which are indicator

functions of some event. Such variables clearly have Bernoulli distribution with

p = P(E). The expected value and variance of a random variable X (if they exist)

will be denoted by E(X) and Var(X) respectively. We have the following extremely

important results.
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Lemma 2.14 (Markov’s Inequality). Let X be a non-negative random variable.

Then, for all t > 0,

P(X ≥ t) ≤ E(X)

t
.

Proof. We have that

X = X1[X≥t] +X1[X<t] ≥ X1[X≥t] ≥ t1[X≥t].

Hence

E(X) ≥ E(t1[X≥t]) = tE(1[X≥t]) = tP(X ≥ t).

2

Corollary 2.15 (First Moment Method). Let X be a non-negative integer-valued

random variable. Then,

P(X > 0) ≤ E(X).

Proof. Put t = 1 in Markov’s Inequality. 2

Corollary 2.16 (Chebyshev Inequality). If X is a random variable with a finite

mean and variance, then for t > 0,

P(|X − E(X)| ≥ t) ≤ Var(X)

t2
.

Proof. By Markov’s Inequality,

P(|X − E(X)| ≥ t) = P((X − E(X))2 ≥ t2) ≤ E (X − E(X))2

t2
=

Var(X)

t2
.

2

We will also use the law of total expectation, which states that for any finite or

countable partition of the probability space Ω = E1 ∪ E2 ∪ . . . and any random

variable X defined on Ω,

E(X) =
∞∑
i=1

E(X | Ei)P(Ei).
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In particular, if X = 1[E] then P(E) =
∞∑
i=1

P(E | Ei)P(Ei).

Lemma 2.17 (Union bound). For any finite or countable set of events E1, E2, . . .

of the probability space Ω, we have

P

(
∞⋃
i=1

Ei

)
≤

∞∑
i=1

P(Ei).

A useful tool which we make repeated use of in throughout the thesis is probability

generating functions (see [26, § 5.1]). Probability generating functions form the

basis for analysing the properties of branching processes, which we will introduce

in Section 3.1.

Definition 2.18 (Probability Generating Function). Let X be a discrete random

variable taking on values in the non-negative integers {0, 1, 2, . . . }. The probability

generating function (p.g.f.) fX : R→ R of X is defined as

fX(z) = E(zX) =
∞∑
k=0

P(X = k)zk, for all z ∈ R.

Remark 2.19. Because the coefficients of zk are all between 0 and 1, and sum to

1, the above power series converges absolutely for all z ∈ R with |z| ≤ 1, though the

radius of convergence can be larger. By definition, the p.g.f. is uniquely determined

by the distribution of X. The p.g.f. also uniquely determines the distribution of X.

This is because we have that P(X = k) = [zk]fX(z), where [zk]fX(z) denotes the

coefficient of zk in fX(z).

We state here a few simple properties of the probability generating function.

Lemma 2.20. Let X be a discrete random variable taking on values in the non-

negative integers, and let fX its denote its probability generating function as above.

Then

(i) fX(0) = P(X = 0),

(ii) fX(1) = 1,

9



(iii) fX is continuous on [0, 1],

(iv) fX is non-decreasing on [0, 1],

(v) fX is convex on [0, 1].

Proof.

(i) fX(0) =
∑∞

k=0 P(X = k) 0k = P(X = 0).

(ii) fX(1) =
∑∞

k=0 P(X = k) 1k =
∑∞

k=0 P(X = k) = 1.

(iii) Recall that a power series is continuous inside its radius of convergence. We

noted in Remark 2.19 that the radius of convergence for a probability gener-

ating function is at least 1. Hence f is continuous on [0, 1].

(iv) We have that

f ′(z) =
∞∑
x=1

P(X = k)kzk−1 ≥ 0

for any z ∈ [0, 1].

(v) We have that

f ′′(z) =
∞∑
k=2

P(X = k)k(k − 1)zk−2 ≥ 0

for any z ∈ [0, 1].

2

Consider the following example of a p.g.f. which will be useful for our later analysis.

Example 2.21. Let X ∼ Bin(n, p). Then for any k = 0, 1, . . . , n, we have that

P(X = k) =
(
n
k

)
pk(1− p)n−k. Hence

fX(z) =
∞∑
k=0

(
n

k

)
pk(1− p)n−kzk

=
∞∑
k=0

(
n

k

)
(pz)k(1− p)n−k

= (pz + 1− p)n. (by the Binomial Theorem)
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Hence fX(z) = (pz + 1− p)n for all z ∈ R.

A natural question is how the p.g.f. behaves under sums and products of random

variables. We make note here of the following useful theorem.

Theorem 2.22. Let X1, . . . , Xn be a sequence of independent and identically dis-

tributed random variables with a common p.g.f. fX . Let Y be a random variable

independent of X1, . . . , Xn with p.g.f. fY , and let ZY = X1 + · · ·+XY =
∑Y

k=1Xk.

Then the p.g.f of ZY is

fZY
(z) = fY (fX(z)) .

Proof. By direct calculation,

fZY
(z) = E(zZY ) =

∞∑
k=0

E
(
zZY | Y = k

)
P(Y = k) (conditioning on Y)

=
∞∑
k=0

E
(
zX1+···+Xk

)
P(Y = y)

=
∞∑
k=0

E
(
zX1
)
· · ·E

(
zXk
)
P(Y = k) (independence)

=
∞∑
k=0

(fX(z))k P(Y = k)

= fY (fX(z)) ,

as required. 2

Corollary 2.23. Let X1, . . . , Xn be as above and let Y be a random variable with

probability distribution P(Y = m) = 1 for some positive integer m. Then the

probability generating function of Z = X1 + · · ·+Xm is fZ(z) = fX(z)m.

Definition 2.24 (Stochastic Dominance). Let X, Y be random variables with

outcomes in the same measurable space E. We say that X stochastically dominates

Y if

P(X ≥ x) ≥ P(Y ≥ x), for all x ∈ E,
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and for at least one x ∈ D,

P(X ≥ x) > P(Y ≥ x).

Stochastic dominance provides a partial order on probability distributions with

outcomes in E. We write Y � X if X stochastically dominates Y .

Remark 2.25. The idea of stochastic dominance is also important in economics

in the area of decision theory. The type of stochastic dominance described above

is referred to as first-order stochastic dominance, and is equivalent to stating that

for two “gambles” with distributions X and Y over some set of outcomes E, every

expected utility maximiser with an increasing utility function prefers gamble X over

gamble Y . There are concepts of higher order stochastic dominance in this literature

as well [27].

Example 2.26. Let m,n ∈ N such that m < n and let 0 < p < 1 be a real

number. If Y ∼ Bin(m, p) and X ∼ Bin(n, p) then Y � X; that is, X stochastically

dominates Y . This is clear since for example, pn = P(X ≥ n) > P(Y ≥ n) = 0 In

particular, if Y ∼ Bin(n− k, p) for some integer 0 < k < n, then Y � X. This will

be useful later on when we analyse branching processes.

We also state without proof the following fact about sums of independent binomial

random variables.

Lemma 2.27. Let 0 < p < 1 and let X1, . . . , Xn be a sequence of random variables

with Xj ∼ Bin(nj, p) for positive integers nj, where j = 1, 2, . . . , N . Then

N∑
j=1

Xj ∼ Bin

( N∑
j=1

nj, p

)
. (2.1)

We now introduce a modern technique in probability theory known as coupling.

This method is essential for one important proof in Chapter 4, and is also used in

a minor result in Section 2.5.1. The following definition can be found in [29].

Definition 2.28. Let X and Y be random variables on the same sample space

Ω. A coupling of X and Y is any ordered pair of random variables (X ′, Y ′) taking

12



values in Ω×Ω, whose marginals have the same distribution as X and Y . That is,

X ′
D
= X, Y ′

D
= Y,

with
D
= denoting equality in distribution.

We will return to this definition shortly, once we have introduced some asymptotics.

2.3 Asymptotics

We use the following standard notation for the asymptotic behaviour of the rela-

tive order of magnitude of two sequences of numbers an and bn, depending on a

parameter n → ∞. All asymptotics in this thesis are as n → ∞ unless otherwise

specified.

• an = O(bn) as n→∞ if there exists constants C and n0 such that |an| ≤ C|bn|
for n ≥ n0. That is, if the sequence |an|/|bn| is bounded, except possibly for

some small values of n for which the ratio may be undefined.

• an = Ω(bn) as n → ∞ if there exists constants c > 0 and n0 such that

|an| ≥ c|bn| for n ≥ n0. This is equivalent to bn = O(an).

• an = Θ(bn) as n → ∞ if an = O(bn) and an = Ω(bn). That is, there exists

constants C, c > 0 and n0 such that c|bn| ≤ |an| ≤ C|bn| for n ≥ n0. This

is sometimes expressed by saying that an and bn are of the same order of

magnitude.

• an = o(bn) as n→∞ if an/bn → 0, that is, if for every ε > 0, there exists nε

such that |an| < εbn for n ≥ nε.

We also introduce here notions of probability asymptotics. Let {Ωn}n be a sequence

of probability spaces with parameter n. An event En ⊆ Ωn holds with high probability

(abbreviated w.h.p.), if P(En)→ 1 as n→∞. We follow the convention of Janson,

 Luczak & Rucinski [32, § 1.2] and introduce a probabilistic version of the little-oh

notation. Let {Xn}n∈N be a sequence of random variables and {an}n∈N a sequence

of positive real numbers. We then define

• Xn = op(an) as n→∞ if for every ε > 0, w.h.p. |Xn| < εan.

We will use this particular notation in our statement of Theorem 3.11.
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There will be an interplay between both probability and asymptotics throughout

the thesis. We now define what it means for a sequence of random variables to

converge in distribution and in probability, after which we return to the idea of

coupling from Section 2.2 (see Definition 2.28). The following two definitions are

from [32, § 1.2].

Definition 2.29. A sequence {Xn}n∈N of real-valued random variables is said to

converge in probability to a random variable X (denoted Xn
p−→ X)) if for all ε > 0,

lim
n→∞

P(|X −Xn| > ε) = 0.

Definition 2.30. A sequence {Xn}n∈N of real-valued random variables is said to

converge in distribution to a random variable X (denoted Xn
d−→ X)) if

lim
n→∞

P(Xn ≤ x) = P(X ≤ x)

for every real x at which P(X ≤ x) is continuous.

In some circumstances it is useful to know when two sequences of random variables

are essentially “the same” as n→∞.

Definition 2.31. Let {Xn}n∈N be a sequence of non-negative integer-valued ran-

dom variables converging in probability to X, and {Yn}n∈N a sequence of non-

negative integer-valued random variables converging in probability to Y . A sequence

of couplings (Xn, Yn) is good if

∞∑
k=0

P(X ′n = k, Y ′n = k) = 1− o(1),

where X ′ and Y ′ denote the marginal distributions of X and Y respectively.

The important use of the above definition is going to be when {Xn}n∈N and {Yn}n∈N
are random variables on Ωn = 2(n

2), the set of all graphs on n vertices, in which

case we are constructing an isomorphism of random graphs. Note that we write

2(n
2) rather than 2([n]

2 ) for the set of all graphs on n vertices.
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2.4 Random Graphs

We begin our discussion of random graphs by introducing the model established by

Paul Erdős in 1947 [17]. At the time, Erdős did not explicitly call the structure

that he had defined a “random graph”. It was not for another twelve years that he,

and Hungarian mathematician Alfréd Rényi formally introduced random graphs,

and provided a remarkable analysis of their structure [18,19]. The questions which

Erdős & Rényi answered are the same questions we will look at in Chapter 3.

Let [n] = {1, 2, . . . , n} be a set of n vertices. We denote the set of all 2(n
2) graphs

on [n] by Ωn, and the family of all subsets of Ωn by Fn. Then one can describe

the model introduced by Erdős as the probability space (Ωn,Fn,P), where for every

ω ∈ Ωn,

P(ω) = 2−(n
2).

Another way to think of this is as
(
n
2

)
independent coin tosses of a fair coin, one

for each potential edge ij, where the outcome “heads” corresponds to including

the edge ij in the graph, and the outcome “tails” corresponds to excluding the

edge ij from the graph. Generally speaking, we are interested in the probability

distribution induced by P on the family of graphs Fn, and we rarely differentiate

between two graphs with the same such distribution. However, it is not sufficient

to formally define a random graph as a probability distribution only; we will see

there are some examples such as the “two-round exposure” technique (Section 2.4.4)

which consider several random graphs at the same time.

2.4.1 Binomial Random Graphs

There are two main models of random graphs whose study has been most exhaustive,

introduced in the next two subsections. Let p be a real number such that 0 ≤ p ≤ 1.

Then for a graph G ∈ Ωn on a vertex set [n] with |E(G)| = eG ≤
(
n
2

)
edges, let the

probability of G be

P(G) = peG(1− p)(
n
2)−eG .

This is called the binomial random graph, denoted by Gn,p. Equivalently one can

think of this as the result of a process whereby we begin with an empty graph on

[n] vertices and undertake
(
n
2

)
independent coin tosses, one for each potential edge

ij where the probability of “heads” is p, corresponding to the probability of adding

edge ij to the graph. For p = 1
2

we have exactly the model introduced by Erdős

in 1947, though Gn,p was introduced by Gilbert [24] in 1959, contemporaneously
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and independently of the work of Erdős & Rényi [18]. The results of Chapter 3 are

primarily based upon the binomial random graph.

2.4.2 Erdős -Rényi Random Graphs

In many cases we may be more interested in a situation where the number of edges of

a binomial random graph Gn,p is fixed. If we condition the binomial random graph

on the event that |E(Gn,p)| = M , we arrive at the Erdős -Rényi random graph,

denoted by Gn,M . This was the model introduced by Erdős and Rényi in 1959 [18]

which we mentioned at the beginning of Section 2.4. The graph Gn,M is sometimes

called the uniform random graph. Given an integer M such that 0 ≤ M ≤
(
n
2

)
,

define Ω to be the family of all graphs on [n] with exactly M edges, and for any

graph G ∈ Ω, let

P(G) =

((n
2

)
M

)−1

.

We will usually capitalize the second subscript when referring to an Erdős -Rényi

random graph, to avoid confusion with the binomial random graph Gn,p. One may

think of this as the process in which we begin with an empty graph on [n] vertices

and insert M edges to the graph in such a way that all possible
((n

2)
M

)
choices are

equally likely. In fact, when
(
n
2

)
p is (loosely speaking) close to M , the binomial and

Erdős -Rényi models are in a very precise sense ’equivalent’ for large n (see [32,

Proposition 1.12, 1.13].

2.4.3 Random subsets

It is often convenient to analyse random graphs in the more general context of

random subsets of a set. The proofs of properties of monotonicity, equivalence,

and thresholds (which we will introduce shortly) are often nearly identical, and we

achieve a higher level of generality for no additional cost. The Gn,p and Gn,M random

graphs introduced already fall quite nicely into this framework.

Let Γ be a finite set with |Γ| = N , and let p be a real number with 0 ≤ p ≤ 1.

Then we obtain the random subset Γp of Γ as follows. For each element of Γ,

independently flip a coin which lands heads with probability p, and add only those

elements to Γp for which the coin lands heads. The elements for which the coin

flip lands tails are not included in Γp. The distribution of Γp is the probability

distribution on Ω = 2Γ given by P(F ) = p|F |(1− p)|Γ|−|F | for F ⊆ Γ. Similarly if we

let M be an integer with 0 ≤ M ≤ N , then we obtain ΓM by randomly choosing

an element of
(

Γ
M

)
; so ΓM has uniform distribution P(F ) =

(
N
M

)−1
for F ∈

(
Γ
M

)
.
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Example 2.32. Let Γ =
(

[n]
2

)
, then one can think of Γ as all possible edge pairs on

the vertex set [n]. Hence in this case we obtain Gn,p = Γp and Gn,M = ΓM .

2.4.4 Two-round exposure (coupling)

The two-round exposure is a useful technique which constructs the binomial random

graph in two independent stages. Suppose that p1 < p2, and define p0 by

1− p2 = (1− p1)(1− p0),

or equivalently

p0 =
p2 − p1

1− p1

.

Then an element of Γ is absent from in the random subset Γp2 if it is absent from

both Γp0 and Γp1 . It follows that

Γp2 = Γp0 ∪ Γp1 ,

where the two random subsets Γp0 and Γp1 are independent. In the case of random

graphs, we first generate Gn,p0 , and then independently generate Gn,p1 on the same

vertex set. We obtain Gn,p2 by taking the union of the edge sets. Intuitively, the first

round “exposes” some edges, and the second round “exposes” some more edges. The

two-round exposure technique is really a kind of isomorphic coupling (see Defini-

tions 2.28 and 2.31) of the random variable Γp2 with the jointly distributed random

variables Γp0 and Γp1 .

2.5 Graph Properties

Although we have defined our random graphs to be labelled (that is, on a labelled

set of vertices), we are mainly interested in properties that are independent of

such labellings, that is, those properties which are preserved by isomorphism. The

following definition is from Diestel [15].

Definition 2.33. Let G = (V,E), and G′ = (V ′, E ′) be two graphs. We say that

G and G′ are isomorphic (write G ∼= G′) if there exists a bijective map φ : V → V ′

such that xy ∈ E(G) if and only if φ(x)φ(y) ∈ E(G′). We say φ is an isomorphism.

If G = G′, then we say that φ is an automorphism.

A graph property (sometimes called a graph invariant) is a property which is pre-

served by isomorphism. We will denote a graph property by P, and we identify
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P with the corresponding family of all labelled graphs on the vertex set [n] which

have that property, that is, P ⊆ 2(n
2).

2.5.1 Monotone Graph Properties

A family of subsets Q ⊆ 2Γ is called increasing if A ⊆ B and A ∈ Q imply that

B ∈ Q. A family of subsets is decreasing if its complement in 2Γ is increasing,

or, equivalently, if the family of the complements in Γ is increasing. A family

which is either increasing or decreasing is called monotone. A family Q is convex

if A ⊆ B ⊆ C and A,C ∈ Q imply B ∈ Q. In the case where Γ =
(

[n]
2

)
, we have

that 2Γ = Ωn, and therefore any family Q ⊆ 2Γ is a family of graphs. If a family

of graphs Q is invariant under isomorphism, then it can be identified with a graph

property.

We now present our first proof which follows from the two-round exposure technique

introduced in Section 2.4.4.

Lemma 2.34 (Bollobás, 1979). Let Q be an increasing property of subsets of Γ,

0 ≤ p1 ≤ p2 ≤ 1, and 0 ≤M1,M2 ≤ N . Then

P(Γp1 ∈ Q) ≤ P(Γp2 ∈ Q)

and

P(ΓM1 ∈ Q) ≤ P(ΓM2 ∈ Q).

Proof. We begin with the first inequality. Let p0 be defined by 1−p2 = (1−p1)(1−
p0), so p0 = (p2−p1)/(1−p1). Then by the two-round exposure technique, we have

that Γp2 = Γp0 ∪ Γp1 . Therefore since Γp1 ⊆ Γp0 ∪ Γp1 = Γp2 , and Q is increasing,

we have that Γp1 ∈ Q implies that Γp2 ∈ Q. Hence

P(Γp1 ∈ Q) ≤ P(Γp2 ∈ Q)

as required. For the second inequality, we can proceed via two-round exposure, or

alternatively we can construct a sequence of random subsets {ΓM}NM=1 by selecting

the elements of Γ one by one in a random order. If we take ΓM to be the M -th

subset in this sequence, then ΓM1 ⊆ ΓM2 , and so as above, ΓM1 ∈ Q implies that

ΓM2 ∈ Q. The result follows. 2
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2.5.2 Thresholds

In our study of random graphs, we are usually interested in the limiting probability

that a random graph G has a certain monotonic property P. That is, we are

interested in P(G ∈ P) as n → ∞. For many graph properties, the limiting

probability jumps suddenly from 0 to 1 as one increases the expected number of

edges of the graph past some “threshold” value. This phenomenon was noticed

by Erdős and Rényi in their early papers on random graphs [18, 19]. Probably

the most striking fact about monotone properties is that they always exhibit a

threshold. This was proved by Bollobás and Thomason [11] for arbitrary random

subsets, and thus is also true for monotone properties of Gn,p and Gn,M . The higher

level of generality provided by the framework of random subsets of a set allows us

to talk about thresholds in random graphs other than just Gn,p or Gn,M , as we do

in Section 4.3. We state the theorem here so that we can refer back to it.

Theorem 2.35 (Bollobás & Thomason, 1987). Every nontrivial monotone graph

property exhibits a threshold.

We now formally define a threshold for an increasing family of sets Q, though one

can easily restate Definitions 2.36 and 2.37 in terms of decreasing properties of sets.

We follow the definitions of Frieze & Karoński [22], though we provide them in the

setting of random subsets of a set, whereas the authors provide them specifically in

relation to Gn,p and Gn,M .

Definition 2.36. A function p∗ = p∗(n) is a threshold for a monotone increasing

property Q, if

lim
n→∞

P(Γp ∈ Q) =

0, if p/p∗ → 0

1, if p/p∗ →∞.

One can make an analogous definition for random subsets ΓM .

19



Definition 2.37. A function M∗ = M∗(n) is a threshold for a monotone increasing

property Q, if

lim
n→∞

P(ΓM ∈ Q) =

0, if M/M∗ → 0

1, if M/M∗ →∞.

Threshold functions are only unique up to multiplication by a positive constant.

That is, if Q is a monotone increasing graph property, and p∗ = p∗(n) is a threshold

for Q, then so is Cp∗ for any constant C > 0. Some monotone graph properties

exhibit thresholds which are more sensitive to changes in the threshold function.

Such thresholds are called sharp thresholds, which we will only define for random

subsets Γp.

Definition 2.38. A function p∗ = p∗(n) is a sharp threshold for a monotone

increasing property Q, if for every ε > 0,

lim
n→∞

P(Γp ∈ Q) =

0, if p/p∗ ≤ 1− ε

1, if p/p∗ ≥ 1 + ε.

If p∗ = p∗(n) is a threshold for a monotone increasing property, we say that Γp

exhibits a phase transition around p∗. This terminology comes from the literature

in Chemistry and Statistical Physics, where for example one might study the phase

transition of water from a gas to a liquid and to a solid.

2.6 Inequalities

We present here some useful inequalities that will be used throughout the paper.

1 + x ≤ ex for all x ∈ R. (2.2)

1− x ≥ e−x/(1−x) 0 ≤ x < 1. (2.3)

We also need Stirling’s approximation, which can also be restated in terms of upper

and lower bounds on n!. We only require its use asymptotically.

n! = (1 + o(1))
√

2πn
(n
e

)n
, for all n ∈ N. (2.4)
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The following asymptotic formulas will also be used at various points in the thesis.(
n

k

)
= (1 + o(1))

nk

k!
, if k2 = o(n). (2.5)

1

1− α
= 1 +O(α), if α = o(1). (2.6)

Equation (2.6) is an immediate consequence of the fact that for all α ∈ R, with

|α| < 1, one has that 1/(1− α) = 1 + α + α2 + · · · = 1 +O(α).

We note here that all logarithms in this thesis will be assumed to be natural un-

less otherwise specified. Chernoff’s Bounds will be needed to give exponentially

decreasing tail bounds on the sums of independent binomially distributed random

variables. The proof is omitted but can be found in Section 2.1 of Janson,  Luczak,

& Rucinski [32].

Theorem 2.39 (Chernoff’s Bounds). If X ∼ Bin(n, p), and λ = np, then, with

ϕ(x) = (1 + x) log(1 + x)− x, x ≥ −1 (and ϕ =∞ for x < −1)

P(X ≥ E(X) + t) ≤ exp

(
−λϕ

(
t

λ

))
≤ exp

(
− t2

2(λ+ t/3)

)
, t ≥ 0; (2.7)

P(X ≤ E(X)− t) ≤ exp

(
−λϕ

(
−t
λ

))
≤ exp

(
− t

2

2λ

)
, t ≥ 0. (2.8)

Hoeffding’s Inequality provides us with an exponentially decreasing tail bound for

sums of independent random variables in a more general setting. We will need this

when providing bounds for sums of independent random variables which are not

binomially distributed.

Theorem 2.40 (Hoeffding’s Inequality). Let X1, . . . Xn be independent random

variables such that Xi is strictly bounded by [ai, bi]. Denote by X the average of the

Xi’s, that is, X = 1
n

∑n
i=1Xi. Then for all t ≥ 0,

P(
∣∣X − E(X)

∣∣ ≥ t) ≤ 2 exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
. (2.9)

In the thesis, I needed to apply Chernoff’s bound Theorem 2.39 to a convergent

sequence of binomial random variables {Xk}k∈N and look at its limiting behaviour
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(see Theorem 3.11). I noticed that it would be useful to be able to apply The-

orem 2.39 to the asymptotic mean of the sequence. I therefore state and prove

sufficient conditions under which this can be done.

Theorem 2.41 (Asymptotic Chernoff’s Bounds (Original)). Let {Xn}n∈N be a se-

quence of random variables with Xn ∼ Bin(n, p), and let λn := E(Xn) be the mean

of Xn. Let nk be a sequence of positive integers satisfying nk =
(

1 + o
(

1
ω(n)

))
n for

some function ω(n)→∞. Let {Yk}k∈N be a sequence of random variables with dis-

tribution Yk ∼ Bin(nk, p) for all k ∈ N. If t = t(n) (with t(n) > 0 for sufficiently

large n) satisfies t = Ω(λ) then we have that

P(Xk ≤ E(Xk)− t) ≤ exp

(
− t

2

2λ

(
1 +Ok

(
1

ω(n)

)))
= exp

(
− t

2

2λ
(1 + ok(1))

)
,

(2.10)

where we write Ok and ok to indicate that the inequality is in the limit as k →∞.

Proof. Let {Yk}k∈N and {Xn}n ∈ N be as in the statement of the theorem, and let

t = t(n) be such that t = Ω(n). Then since nk =
(

1 + o
(

1
ω(n)

))
n, it follows that

for any k ∈ N,

E(Xk) = nkp =

(
1 + o

(
1

ω(n)

))
np =

(
1 + o

(
1

ω(n)

))
λ.

This gives us that

P(Xk ≤ λ− t) = P
(
Xk ≤ λ

(
(1 + o

(
1

ω(n)

))
−
(

(t+ o

(
λ

ω(n)

)))
. (2.11)

Hence for any fixed k ∈ N, we can apply Chernoff’s Bound (Theorem 2.39) to

(2.11), which gives

P(Xk ≤ λ− t) ≤ exp

−
(
t+ o

(
λ

ω(n)

))2

2λ
(

1 + o
(

1
ω(n)

))
 . (2.12)
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We focus on the expression inside the exponential function in (2.12). By (2.6)

from Section 2.6, we have that

1

1 + o
(

1
ω(n)

) = 1 +O

(
1

ω(n)

)
.

Hence we can write(
t+ o

(
λ

ω(n)

))2

2λ
(

1 + o
(

1
ω(n)

)) =

(
t+ o

(
λ

ω(n)

))2

2λ

(
1 +O

(
1

ω(n)

))
. (2.13)

Moreover, we can rewrite the numerator of (2.12) as(
t+ o

(
λ

ω(n)

))2

= t2
(

1 + o

(
λ

tω(n)

))2

.

Then since t = Ω(λ), it follows that λ
tω(n)

= O
(

1
ω(n)

)
, and therefore

t2
(

1 + o

(
λ

tω(n)

))2

= t2
(

1 + o

(
1

ω(n)

))2

= t2
(

1 + o

(
1

ω(n)

))
.

Putting this together with (2.13), we conclude that

P(Xk ≤ λ− t) ≤ exp

−
(
t+ o

(
λ

ω(n)

))2

2λ
(

1 + o
(

1
ω(n)

))
 ,

= exp

(
− t

2

2λ

(
1 + o

(
1

ω(n)

))(
1 +O

(
1

ω(n)

)))

= exp

(
− t

2

2λ

(
1 +O

(
1

ω(n)

)))
,

completing the proof. 2

Remark 2.42. We note that although we required t > 0 in our proof of Theo-

rem 2.41, the theorem still holds for t = 0. In this case the inequality is trivial.

Theorem 2.41 says that given a sequence of random variables converging to a bino-

mial distribution we can apply Chernoff’s bound with the asymptotic mean of the
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sequence. In particular, if t2

2λ
→∞, then

exp

(
− t

2

2λ
(1 + o(1))

)
=

exp
(
o
(
t2

2λ

))
exp

(
t2

2λ

) → 0.

So in this case, P(Xk ≤ E(Xk) − t) → 0. Note that since t = Ω(λ), a sufficient

condition for t2/(2λ) → ∞ is that λ → ∞. Unfortunately we will have λ equal to

a constant in our application of Theorem 2.41.

This chapter has described the necessary theoretical background for the thesis. In

the chapter that follows, we will use these theoretical tools to study the existence

of a specific graph property in the binomial random graph Gn,p.
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Chapter 3

The Giant Component in Erdős-Rényi Random Graphs

In the mid 19th century certain Victorian aristocrats were becoming concerned that

their surnames might die out in the coming generations. Polymath (and half-cousin

of Charles Darwin) Sir Francis Galton posed the following question in the 1873

Educational Times:

How many male children (on average) must each generation of a family have in

order for the family name to continue in perpetuity?

It was Reverend Henry William Watson who provide an answer, and in 1874 the

Galton & Watson wrote a paper on the matter entitled On the probability of ex-

tinction of families [54].

In this chapter we study the threshold for the emergence of the giant component

in binomial random graphs. A giant component in a graph is a connected set of

vertices which contains a constant fraction of all of the vertices. The property of

having a giant component is a monotone increasing property of graphs, and as such,

exhibits a threshold by Theorem 2.35. We prove that p = 1
n

is a sharp threshold

for the emergence of a giant component (Theorems 3.10 and 3.11), and that when

a giant component exists, it is unique (Lemma 3.13). Hence we routinely refer to

this component as the giant component. The phase transition which occurs in Gn,p
around p = 1

n
is known as the evolution of the giant component. We note here that

in the physics literature, which we look at in Chapter 4, the study of connected

components of a random graph is called percolation theory.

The approach we follow makes use of the technique developed by Galton & Wat-

son [54] known as a branching process. Though these processes were discovered (and
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studied) in the late 19th century, the diversity of their applicability was not realised

until the latter half of the 20th century [3]. Since then, they have become an ex-

tremely important tool in the theory of random graphs, and we will continue to use

them in Chapter 4. Branching processes allow us to approximate the structure of

a random graph, and under certain conditions, this approximation turns out to be

very precise asymptotically. We will need to understand some basic results in the

theory of branching processes before we are able to apply them to random graphs.

The branching process we consider is also known as a breadth first search, as opposed

to a depth first search. The difference is illustrated in the image below. A breadth

first search is depicted on the left side of the image, and a depth first search on

the right, both beginning at vertex 0. The order of the search is indicated by

the numbers 0, 1, . . . , 10, and we have used thick lines to highlight the difference

between the two algorithms in the first three stages of searching. Krivelevich &

Sudakov (2012) [34] prove theorems analogous to Theorems 3.10 and 3.11 using

depth first searches, and were the first to do so.
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3.1 Branching Processes

We begin this section by introducing the model proposed by Galton & Watson [54].

3.1.1 Uniform (Galton-Watson) Branching Process

Let {Zn,k}n∈N, k∈Z+ be a sequence of independent and identically distributed random

variables with distribution D, and taking values in the non-negative integers. We

call each n a generation, and we call D the offspring distribution. Furthermore,

for Z ∼ D we write the probability mass function (p.m.f.) for Z as {pi}i∈N, where

pi = P(Z = i).

(I) A population starts with one individual at time n = 0 : Z0 = 1.

(II) After one unit of time (n = 1), the individual Z0 produces Z1 := Z0,1 identical

copies of itself and dies, where Z1 ∼ D.
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(III) (a) If Z1 = 0, the population dies and Zn = 0 for all n ≥ 1.

(b) If Z1 > 0, then at time n = 2, each of the Z1 individuals give birth

to a random number of children and dies. The first individual has Z1,1

children, the second has Z1,2, . . . , and the last one has Z1,Z1 children.

Let Zn,i denote the number of children of the i-th individual in the n-th

generation, then each Zn,i is independently distributed according to D.

The total number of individuals in the second generation is then

Z2 =

Z1∑
k=1

Z1,k.

(c) The third, fourth, etc. generations are produced in the same way. That

is,

Zn+1 =
Zn∑
k=1

Zn,k.

If it happens that Zn = 0 for some n ∈ N, then Zm = 0 for all m ≥ n; if

this occurs we say that the population is extinct.

Definition 3.1. A sequence {Zn}n∈N with the properties described in I, II, and III

above is called a uniform (or Galton-Watson) branching process.

3.1.2 Generating Functions and Uniform Branching Processes

The main point of interest in analyzing the uniform branching process is looking

at the probabilistic properties of the sequence {Zn}n∈N. Remember that Zn is the

total number of individuals in the n-th generation. We have that by definition,

Zn is the sum of Zn−1 independent copies of a random variable with the offspring

distribution. The distribution of Zn is completely determined by its p.m.f., which

we have already seen in Remark 2.19 is completely determined by its probability

generating function. Indeed while we may not always be able to compute the p.m.f.

it is often possible to compute the generating function.

Proposition 3.2. Let {Zn}n∈N be a branching process, and let the generating func-

tion of its offspring distribution {pn}n∈N be given by f(z). Then the generating
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function of Zn is the n-fold composition of f with itself, that is,

fZn(z) = f(f(. . . f︸ ︷︷ ︸
n

(z) . . . )) = fn(z), n ≥ 1.

Proof. We proceed by induction. When n = 1, we have that the distribution of Z1

is exactly the offspring distribution, hence fZ1 = f . Now suppose the proposition

is true for some n = k, and consider the case when n = k + 1. We have

Zk+1 =

Zk∑
i=1

Zk,i

is the sum of Zk independent random variables with the offspring distribution

{pn}n∈N. But by Theorem 2.22, we have that

fZk+1
(z) = fZk

(f(z)) = fk(f(z)) = fk+1(z),

where the second equality comes from the inductive assumption. Hence the propo-

sition holds for n = k + 1 and thus for all n ∈ N by induction. 2

3.1.3 Extinction Probability

The original question which Galton & Watson sought to answer can be stated as

follows:

Under what conditions on the offspring distribution will the process {Zn}n∈N never

go extinct, that is, when does

P(Zn ≥ 1 for all n ∈ N) = 1

hold?

We can provide an answer to this question using generating functions. Let Z =∑
n≥0 Zn be the total number of offspring in the branching process. The probability

ρ of extinction of the branching process is defined to be

ρ = P(Z <∞) = lim
n→∞

P(Zn = 0),
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since if Zn = 0 for some n ∈ N, then Zm = 0 for all m ≥ n. Then by Lemma 2.20,

we have that P(Zn = 0) = fZn(0), and so by Proposition 3.2,

ρ = lim
n→∞

P(Zn = 0) = lim
n→∞

fZn(0) = lim
n→∞

fn(0).

We may now state and prove the following important theorem.

Theorem 3.3. The extinction probability ρ is the smallest non-negative solution of

the equation

z = f(z),

where f is the generating function of the offspring distribution.

Proof. We first prove that ρ is a solution to the equation z = f(z). Since f is

continuous inside its radius of convergence (see Lemma 2.20), we have that for any

convergent sequence {ρn}n∈N, with ρn ∈ [0, 1] for all n,

f
(

lim
n→∞

ρn

)
= lim

n→∞
f(ρn).

Consider then the sequence

ρn = fn(0).

One has that ρn → ρ as n→∞, and that f(ρn) = ρn+1. Therefore

ρ = lim
n→∞

ρn = lim
n→∞

ρn+1 = lim
n→∞

f(ρn) = f
(

lim
n→∞

ρn

)
= f(ρ),

and so ρ solves the equation f(z) = z.

We now show that ρ is indeed the smallest such non-negative solution. Suppose

that ρ′ is another solution to f(z) = z on [0, 1]. Then since 0 ≤ ρ′, and f is a

non-decreasing function (again, see Lemma 2.20), we have that

f(0) ≤ f(ρ′) = ρ′.

Then applying the generating function to both sides, we have that

f(f(0)) ≤ f(f(ρ′)) = f(ρ′) = ρ′.
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Continuing in this way we have that for any n ∈ N,

fn(0) ≤ fn(ρ′) = ρ′.

It follows that ρ = limn→∞ f
n(0) ≤ limn→∞ ρ

′ = ρ′, and so ρ′ does not exceed ρ.

This completes the proof. 2

Corollary 3.4. Keep the above notation and let Z be distributed according to the

offspring distribution {pn}n∈N where pn = P(Z = n). If p1 6= 1 then ρ = 1 if and

only if E(Z) ≤ 1. If p1 = 1 then clearly ρ = 0.

Proof. If p0 = 0, then ρ = 0 and E(Z) > 1, so suppose p0 > 0. Suppose that p1 6= 1.

Recall from Lemma 2.20 that f ′(1) = E(Z), and since p1 6= 1 by assumption, it is

not true that f(z) = z everywhere. Consider then the two curves y = f(z) and

y = z. If f ′(1) < 1, then by the fact that f is continuous, nondecreasing, and convex

on [0, 1] (Lemma 2.20), the curves intersects at a single point. This point cannot be

0 since we assumed p0 > 0, and hence since again by Lemma 2.20, f(1) = 1 we see

that it must be at z = 1. Therefore by Theorem 3.3, ρ = 1. If instead f ′(1) > 1,

then there are two intersections between the curves. Clearly z = 1 is still a point

of intersection, but the second is at some z < 1, and Theorem 3.3 tells us that that

this is precisely where z = ρ. Hence ρ = 1 if and only if E(Z) ≤ 1. 2

We now consider two key examples of extinction probabilities.

Example 3.5. Suppose that the number of offspring is Poisson with distribution

X ∼ Po(λ). Then the corresponding generating function is

fX(z) =
∞∑
k=0

ckzk

k!
e−λ = exp(λ(z − 1)).

Thus if λ > 1, then by Corollary 3.4, the extinction probability ρ is equal to 1−β(λ),

where β = β(λ) ∈ (0, 1) is uniquely determined by the largest non-negative solution

to equation

β + e−βλ = 1. (3.1)

This can be seen by putting z = 1−β into the fixed point equation z = exp(λ(z−1)).
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Example 3.6. Suppose that the number of offspring is Binomial with distribution

Xn ∼ Bin(n, p), where np→ λ > 1 as n→∞. Then the corresponding generating

function is

fXn(z) =
n∑
k=0

(
n

k

)
(zp)k(1− p)n−k = (zp+ 1− p)n,

for every real number z we have

lim
n→∞

fXn(z) = exp(λ(z − 1)) = fX(x).

That is, the p.g.f. of Xn tends pointwise to the p.g.f. of X ∼ Po(λ). Hence as

n → ∞, the probability of extinction ρn,c of the branching process defined by Xn

converges to 1− β(λ), where β(λ) is defined in (3.1).

Remark 3.7. We can make a few minor adjustments to generalise the branching

process proposed by Galton & Watson. We again let {Zn,k}n∈N,k∈Z+ be a sequence of

independent random variables, but now allow Zn,k to have p.m.f. {pi(n, k)}i∈N. In

this case, the offspring distribution does not need to be the same for every individual,

and we call this a non-uniform branching process.

We now discuss an alternative description of the non-uniform branching process.

3.1.4 Exploration of Branching Processes

It is useful to consider a branching process unfolding step by step rather than

generation by generation; that is, indexing the branching process in N rather than

N× N. As described in Section 3.1.5, when applying the branching process to the

exploration of a random graph, we can imagine that the branching process has

already unfolded and we are now deducing what is most likely to have happened,

vertex by vertex (each vertex represented by a single subscript). In light of this, we

present an original characterisation of non-uniform branching processes.

Formally, let X1, X2, . . . be a sequence of independent non-negative integer-valued

random variables. Then one can equivalently define a non-uniform branching pro-

cess (as in Remark 3.7) with underlying space X1, . . . , Xn as follows. At time

n = 0 we begin with a single particle. At time n = 1, this particle gives birth to

X1 ≥ 0 other particles and then dies. Each of those X1 particles then gives birth

to X2, . . . , XX1+1 more particles and each die also. This process continues either

infinitely or until all particles have died. We call the initial X1 children the first
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generation, the following X2, . . . , XX1+1 the second generation and so on. Let Zi

denote the number of offspring in the i-th generation, and let Yi =
∑i

j=0 Zj. Then

we define Z0 = 1 (with probability 1), while for i ≥ 1, the variable Zi is given by

Zi =

Yi−1∑
j=Yi−2+1

Xj. (3.2)

Note that if Zi = 0 for some i, then Zj = 0 for all j ≥ i. These Zi are exactly the

description of the branching process we are used to from Section 3.1.1, but now the

summation that specifies them is indexed by only 1 subscript. We use i instead of n

here as the subscript because when we apply this to a random graph, n will denote

the number of vertices in the graph.

In practice we avoid the messy expression (3.2) above by using a uniform branching

process to provide an upper and lower bound (in the sense of stochastic dominance)

for the non-uniform process. Indeed, we will only perform calculations with the case

where Xi = X for every i = 1, . . . , n, which is simply the uniform branching process

we saw earlier. As we have already remarked, in this case we have that Zi is the

sum of Zi−1 independent copies of X. See below for a visual representation of this

process.

Z0

1 2 X1

1 X2 X3 1 XY1

1 XY2

Z1

Z2

Z3

· · ·

· · · · · ·

· · ·

· · ·

We may now give a third formulation of the branching process in terms of a re-

currence relation. The following formulation can be found in [41]. Given i.i.d.

variables X1, X2, . . . as above with offspring distribution X, a branching process on

X1, X2, . . . can equivalently be described as a sequence of random variables {Gi}i∈N
satisfying the following recurrence relation

G0 = 1, Gi = Gi−1 +Xi − 1 (i > 0),
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which gives explicit formula

Gi = 1− i+
i∑

j=1

Xj for all i ≥ 0.

We will refer to this as a branching recurrence process (BRP) on X1, X2, . . . , in

order to differentiate it from the way we have formalised branching processes so far.

We call Gi the number of alive particles at step i. If Gi = 0 for some i > 0, we say

that the process has gone extinct. Let T be the first index for which GT = 0, and

let T = ∞ if extinction does not happen. Then we have the following inequality.:

If 1 ≤ i ≤ T , then Gi ≥ 0 and hence

i∑
j=1

Xj ≥ i− 1. (3.3)

Note that if the process dies at time T , exactly T particles were active during the

process. Hence we can call T the total population.

Finally then, we can present the application of branching processes to our question

in the introduction regarding the evolution of the giant component in Gn,p.

3.1.5 Branching Processes on Gn,p
The branching process provides us with a useful framework for analysing the size

of components in the random graphs Gn,p or Gn,M . Consider the binomial ran-

dom graph Gn,p and choose a vertex v1 from it at random. We call v1 the root of

the branching process. Then v1 has X1 ∼ Bin(n − 1, p) neighbours: label them as

v2, v3, . . . , vX1+1. We can view v1 as a particle that gives birth to these X1 new parti-

cles and dies. Now v2 can have up to n−(X1 +1) “non-discovered” neighbours, each

with probability p. Let X2 ∼ Bin(n−1−X1, p) be the number of “non-discovered”

neighbours of v2, and label them as vX1+2, vX1+3, . . . , vX1+X2+1. Continuing in this

way, we can construct a sequence of random variables X1, X2, . . . taking on non-

negative integer-values and this sequence is a candidate from which we can define

a BRP.

Let {Gi}i∈N be the BRP on X1, X2, . . . . Notice firstly that this is certainly not

a uniform branching process, since each particle may have a different offspring
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distribution. Indeed, we have

Gi = 1 +
i∑

j=1

Xj − i (i ≥ 0) (3.4)

Then

Xi ∼ Bin(n− 1−
i−1∑
j=1

Xj, p)

which implies that Xi ∼ Bin(n− (i− 1)−Gi−1, p). (3.5)

For a BRP on a random graph, we will say that a vertex v is saturated if all of

its neighbours have been found, and unsaturated if it has been discovered in the

branching process but not all of its neighbours have yet been found.

Intuitively, (3.5) says that the possible neighbours of vi in the branching process

can be any vertex which has not already had children (there are n − (i − 1) of

these), or has not already been a child of another vertex. The vertices which have

already been the child of another vertex are the Gi−1 “alive” vertices. Moreover T ,

which represents the total population of the branching process, is the size of the

connected component containing v1. Hence studying T gives insight into the size

of components in Gn,p.

Remark 3.8. As we mentioned earlier, we prefer not to deal with non-uniform

processes. Performing calculations with non-uniform processes can quickly become

complicated, and often does not yield a closed form solution. Hence we will bound

the BRP on Xi ∼ Bin(n−(i−1)−Gi−1, p) above and below as follows: Let {G+
i }i∈N

and {G−i }i∈N be BRP’s with corresponding offspring distributions

X+ ∼ Bin(n, p), X− ∼ Bin(n− λk, p)

for some constant λ > 0, and an integer-valued function k = k(n) satisfying 0 <

λk < n, with k(n) = o(n) for all n ∈ N. Then (as in Example 2.26) we have that

in terms of stochastic dominance X−i � Xi � X+
i , that is,

P(X+
i ≥ x) ≥ P(Xi ≥ x) ≥ P(X−i ≥ x), for all x ∈ N.
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The inequalities above are used implicitly in the proof of Theorems 3.10 and 3.11

found in [32, Chapter 5]. We use these inequalities to provide an ordering of BRPs

on binomial random variables in terms of stochastic dominance. To the best of our

knowledge, this has not been done explicitly before.

Corollary 3.9 (Original). Let {Xj}j∈N be a sequence of random variables with

Xj ∼ Bin(nj, p) for positive integers nj, where j ∈ N. Similarly, let {Yj}j∈N be

sequences of random variables Yj ∼ Bin(mj, p) for positive integers mj, where j ∈ N.

Moreover, let {Gi}i∈N be a BRP on {Xi}i∈N, and {G′i}i∈N a BRP on {Yi}∞i=1. If

nj < mj for all j ∈ N then Gi � G′i for all i ∈ N.

Proof. Let {Xi}i∈N, {Yi}i∈N, {Gi}i∈N and {G′i}i∈N be as described in the statement

of the corollary. Then

P(Gi = k) = P
( i∑

j=1

Xj = k + i− 1

)
,

P(G′i = k) = P
( i∑

j=1

Yj = k + i− 1

)
.

By Lemma 2.27,

i∑
j=1

Xj ∼ Bin

( m∑
j=1

nj, p

)
and

i∑
j=1

Yj ∼ Bin

( m∑
j=1

mj, p

)
.

But we already know from Example 2.26 that if m < n then Bin(m, p) � Bin(n, p).

Hence if mj > nj for all j ∈ N, then

i∑
j=1

Xj �
i∑

j=1

Yj

holds for all i ∈ N. The result follows immediately. 2

3.2 Threshold for existence of the Giant Component

Recall that a giant component in a graph is a connected set of vertices which

contains a constant fraction of all of the vertices. We stated in the introduction

to this chapter that p = 1
n

is a sharp threshold for the emergence of the giant

component, and we will prove this result shortly. The values of p for which p = 1−ε
n
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for some ε > 0 are said to be in the subcritical regime. The values of p for which

p = 1+ε
n

for some ε > 0 are said to be in the supercritical regime. When p = 1+o(1)
n

,

this is called the critical window. Analysis of the giant component inside the critical

window is rather delicate and is beyond the scope of this thesis, though it was proved

by  Luczak [38] that when p = 1
n

+ λ
n4/3 for a constant λ, the largest component of

Gn,p is on the order of Θ(n2/3). We now present an important theorem of Erdős and

Rènyi (1960).

Theorem 3.10 (Subcritical case). Let p = λ
n

, where λ < 1 is a constant. Then

w.h.p. the largest component of Gn,p has at most k(n) = 2+ε
(1−λ)2

log n vertices, where

ε > 0.

Proof. Let us assume that p = λ
n

and λ < 1. Our goal here is to show that

the probability that an arbitrary vertex v is in a component of size greater than

k = k(n) goes to 0 as n → ∞. Hence we choose a vertex v of Gn,p and take the

BRP as in Section 3.1.5 to explore the component containing v. We have that the

probability that v is in a component of size at least k is exactly the probability that

the BRP has not gone extinct before k rounds of exploration. Hence

P(v is in component of size at least k) = P(k ≤ T ) ≤ P

(
k∑
j=1

Xj ≥ k − 1

)

by (3.3). Moreover, by Corollary 3.9, we see that

P

(
k∑
j=1

Xj ≥ k − 1

)
≤ P

(
k∑
j=1

X+
j ≥ k − 1

)
.

Finally then, since we had n choices for our initial vertex v, the probability that

Gn,p contains a component of size at least k ≥ (2 + ε) log n/(1 − λ)2 is bounded

above by

nP

(
k∑
j=1

X+
j ≥ k − 1

)
= nP

(
k∑
j=1

X+
j ≥ kλ+ (1− λ)k − 1

)

≤ n exp

(
− ((1− λ)k − 1)2

2(λk + (1− λ)k/3)

)
≤ n exp

(
−(1− λ)2

2
k

)
(3.6)
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≤ n−ε/2

= o(1).

Here the first inequality comes from applying Chernoff’s bound (see Theorem 2.39)

with E
(∑k

j=1X
+
j

)
= knp = kλ. 2

Theorem 3.10 proves that when p = 1−ε
n

for some ε > 0, no giant component exists.

To prove that a unique giant component exists for p > 1+ε
n

, we need to take a little

more care. We show first that there are no components of “medium” size, and then

that there is at most one component of “large” size. We finish the proof by showing

exactly how many vertices are in components of “small” size and “large” size. We

divide the proof of Theorem 3.11 into three lemmas.

Theorem 3.11 (Supercritical case). Let p = λ
n

, where λ > 1 is a constant. Let

β = β(λ) ∈ (0, 1) be the unique smallest positive solution to equation

β + e−βλ = 1

as in Example 3.5. Then Gn,p contains a giant component of (1 + op(1))βn vertices.

Furthermore, w.h.p. the size of the second largest component of Gn,p is at most
(40+ε)λ
3(λ−1)2

log n for any ε > 0.

Going back to our definitions in probability asymptotics from Section 2.3, a re-

formulation of the first part of this theorem is that for every ε > 0, w.h.p. Gn,p
contains a component of size (1 + ε) βn. In Figure 3.1 below, we plot the function

β(λ) against λ, where λ > 1 and β(λ) is defined in Theorem 3.11. One can see the

rapid increase in the size of the giant component as λ gets larger. We now prove

the first of three lemmas. Suppose for the remainder of this chapter that λ > 1 is

a constant, and p = λ
n
. Lemma 3.12 makes use of the branching processes {G−i }i∈N

and {G+
i }i∈N defined in Remark 3.8.

Lemma 3.12. Let k− = (40+ε)λ
3(λ−1)2

log n for some ε > 0 and k+ = n2/3. Then w.h.p.

there is no component of Gn,p with size in the interval [k−, k+].

Proof. Let v be a vertex in Gn,p and let k be such that k− ≤ k ≤ k+. We consider a

BRP beginning at v. In order to show that there is no component of Gn,p with size
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Figure 3.1: The fraction β(λ) of vertices in the giant component

k, it suffices to show that at the k-th step there is always some positive number of

alive vertices remaining in the BRP. In particular, we show that at the k-th step

there are at least (λ− 1)k/2 alive vertices in the component containing v, that is,

Gk ≥ (λ− 1)k/2. To do this, we show that probability of the complementary event

vanishes, that is,

P
(

there exists k− ≤ k ≤ k+ s.t. Gk <
(λ− 1)k

2

)
(3.7)

tends to 0. Why is (3.7) true? Well, suppose such a k exists with k− ≤ k ≤ k+ and

Gk <
(λ−1)k

2
. Then notice that for any i ≤ k,

i+Gi ≤ k +Gk <
(λ+ 1)k

2
< λk ≤ λk+.

Recalling that for any i = 1, . . . , k+, each variable Xi in the BRP on {Xi}i∈N is

distributed as Xi+1 ∼ Bin(n− (i+Gi), p) (i ≥ 0), each Xi stochastically dominates

X−i ∼ Bin(n− λk+, p)

as in Remark 3.8. To prepare to apply Chernoff’s bound, we note that for the

distribution X−i we have

E

(
k∑
i=1

X−i

)
= λk(1− λn−1/3) = λk (1− o(1)) .

Since X−i and X+
i are binomially distributed random variables, and E(X−i ) →

E(X+
i ), Theorem 2.41 allows us to apply Chernoff’s bound to

∑k
i=1X

−
i using the
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asymptotic mean of the sequence {X−i }, that is, using λk. Note that 2+(λ−1)k
2

= Ω(λk)

and so the condition “t = Ω(λ)” required by Theorem 2.41 is satisfied when we use

this theorem in (3.8). Hence first applying the union bound (see Lemma 2.17),

followed by the asymptotic version of Chernoff’s bound (Theorem 2.41), we have

that for any specific k where k− ≤ k ≤ k+,

P
(
Gk <

(λ− 1)k

2

)
= P

(
k∑
i=1

Xi < k − 1 +
(λ− 1)k

2

)

≤ P

(
k∑
i=1

X−i < λk − 2 + (λ− 1)k

2

)

≤ exp

(
−(2 + (λ− 1)k)2

8λk
(1 + o(1))

)
(3.8)

= exp

(
−4 + 4(λ− 1)k + (λ− 1)2

8λk
(1 + o(1))

)
= exp

(
−(λ− 1)2 k

8λ
(1 + o(1))

)

Finally, summing over all k ∈ {k−, . . . , k+} and multiplying by n for the initial

choice of vertex v, we have that (3.7) is bounded above by

n

k+∑
k=k−

exp

(
−(λ− 1)2 k

8λ

)
≤ n

k+∑
k=k−

exp

(
−(λ− 1)2 k

8λ
(1 + o(1))

)

≤ nk+ exp

(
−(λ− 1)2 k−

8λ
(1 + o(1))

)

= n5/3 exp

(
−40 + ε

24
log n

)
= n−ε(1+o(1))/24−o(1)

≤ n−ε/25

= o(1),

completing the proof. 2

Lemma 3.13. With high probability there is at most one component of size at

least k+.
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Proof. Consider a pair of vertices v, v′ ∈ V (Gn,p), and suppose that v, v′ belong

to components of size at least k+. First, we look at a BRP beginning at v.

By Lemma 3.12, we know that after the first k+ steps, there are at least (λ−1)k+/2

alive vertices left in the exploration process. The same can be said if we start a

separate BRP beginning at v′; in this process we either end up joining with the

component from the BRP beginning at v, or we end up with a set of vertices sepa-

rate from the component containing v, among which at least (λ − 1)k+/2 are still

alive. If the BRP’s beginning at v and v′ join up, then we are done, so we want

to bound the probability that they do not join up. That is, we are interested in

the probability that there are no edges between the two sets of alive vertices of

the two BRP’s. If this probability vanishes then with w.h.p the two components

are connected. Using (2.2) from Section 2.6, and noting that n2 = o(en
1/3

), this

probability is bounded above by

exp

(
((λ− 1)k+)2

4
log(1− p)

)
≤ exp

(
−(λ− 1)2λn1/3/4

)
= o(n−2).

Multiplying by n(n−1) = O(n2) for the choice of v and v′ gives that the probability

that there are no edges between the two sets of alive vertices of two BRP’s beginning

at any two vertices of Gn,p is o(1), completing the proof. 2

Recall from Example 3.6 that the limiting extinction probability of a branching

process with offspring distribution Bin(n, p) is given by ρ = 1 − β, where β is the

unique smallest positive solution of β + e−βλ = 1. We may now present the final

lemma that we need before proving Theorem 3.11 for the supercritical case.

Lemma 3.14. Let X be the number of vertices of Gn,p in components of size at

most k−. Then E(X) = ρn + o(n) and Var(X) = o(n2), where ρ is the extinction

probability of a uniform branching process with offspring distribution Bin(n, p).

Proof. Let X be a random variable counting how many vertices of Gn,p are in

components of size at most k−. Then X =
∑

v Iv where Iv is an indicator variable

for the event “v is in a component of size at most k−”. We want to show that

E(Iv) = ρ+ o(1), so we consider a BRP beginning at v. Since the distributions X+

and X− converge to Bin(n, p) as n → ∞, we have that the extinction probability

of a BRP on either X+ or X− is ρ+ o(1) (as n→∞). Recall that in Lemma 3.12
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we showed that X−i is stochastically dominated by Xi for all i ∈ N. It follows then

from Corollary 3.9 that a BRP {Gi}i∈N on X stochastically dominates the BRP on

X−; we will call this BRP G−. Hence, if T is the total population of the BRP on

X, we have

P(G−T > 0) ≤ P(GT > 0) = 0.

That is, the BRP on X− becomes extinct and therefore P(Iv = 1) ≤ ρ + o(1).

Moreover, if X+ goes extinct, then the probability that it does so before k− iter-

ations of the BRP is 1 − o(n−1). This is precisely what (3.6) states in the proof

of Theorem 3.10. Now if X+ goes extinct at time i < k−, then Gi � G+
i = 0, so v

is in a component of size at most k−. Hence ρ+ o(1) ≤ P(Iv = 1) and we conclude

that E(Iv) = P(Iv = 1) = ρ+ o(1) as required.

We now compute the variance of X. Notice that

Var(X) = E

(∑
v

Iv

)2
− E(∑

v

Iv

)2

=
∑
v

E(I2
v ) +

∑
(v,v′)
v 6=v′

E(IvIv′)− (ρn+ o(n))2.

We focus on the second summation, which is over distinct vertices. Choose distinct

vertices v, v′ in our graph Gn,p. Consider a BRP with v as a root. With proba-

bility ρ + o(1), vertex v is in a small component and in this case T ≤ k−. With

probability 1 − o(1), vertex v′ has not yet been discovered in the process. Then

consider a separate BRP beginning at v′ 6= v on the graph obtained by remov-

ing the component containing v. Since we have only removed O(log n) vertices,

this new graph has a number of vertices which is on the order of n. Hence the

probability that v′ is in a small component is again ρ + o(1). This gives us that

E(IvIv′) = P(Iv = Iv′ = 1) = ρ2 + o(1) for v 6= v′. Therefore

Var(X) ≤ n(ρ+ o(1)) + n2(ρ2 + o(1))− (ρ2n2 + o(n2)) = o(n2),

completing the proof. 2

We may now prove Theorem 3.11.
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Proof. By Lemma 3.13, we know that if a component of size at least k+ exists, then

it is unique. Moreover, by Lemma 3.12 we have that the second largest component

is of size at most k−. Recall from Lemma 3.14 that X denotes the number of vertices

of Gn,p in components of size at most k−. Then applying Chebyshev’s inequality

(Corollary 2.16) followed by Lemma 3.14, we have that for any ε > 0,

P (|X − E(X)| ≥ εE(X)) ≤ Var(X)

(εE(X))2 =
o(n2)

ε2ρ2n2 + o(n2)
= o(1).

Therefore, as E(X) = ρn + o(n), we have that X = ρn + o(n) with probability

1 − o(1). Hence w.h.p., the number of vertices in the unique giant component is

n − ρn + o(n), and therefore the fraction of vertices in the giant component is

(1− op(1))βn, completing the proof. 2

Our arguments in the proofs of Theorems 3.10 and 3.11 relied heavily upon looking

at the expected number of neighbours of a randomly chosen vertex, that is, its

expected degree. We found that when the expected degree of a vertex exceeds 1,

the giant component emerges. In the next chapter, we consider the emergence of

the giant component in random graphs where the degree of each vertex is specified.
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Chapter 4

The Giant Component for an Arbitrary Degree Distribution

4.1 Degree Distributions

When it comes to real-world graphs (often called networks in the physics and social

science literatures), there are many properties which have been observed that the

binomial random graph Gn,p simply does not exhibit. Thus in practice, knowing the

threshold for the emergence of the giant component is only useful when dealing with

very specialised types of networks. We would like to know when a giant component

exists in a much more general setting. Homophily is the idea that people have

connections with those who are of a similar “type” to them. This has been observed

substantially in a variety of friendship and relationship networks ( [35,40]), and this

property has an effect on diffusive processes that can take place on networks [25,49]

(such as the kind of process we will look at in Chapter 5). This property is not

captured by Gn,p. We say that there is clustering in a graph when the graph has

small subgraphs with lots of edges. We observe significantly more clustering in

real world networks than we observe in the binomial random graph [56]. Indeed

Gn,p is quite sparse when p = o(1), in the sense that we would not expect to find

edges concentrated around a few vertices, but rather spread out over the whole

graph. There are a plethora of other observed properties we could talk about here

that are well studied, such as small average path length, small diameter, and low

density ( [40, 52, 56]), but we have chosen to focus on the distribution of degrees of

vertices in a graph.

Definition 4.1. Let G be a random graph on [n]. The degree distribution D is

defined by the probability density function {pk}k∈N such that P(deg(v) = k) = pk

for any vertex v ∈ [n] chosen uniformly at random.
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We will say that a vertex is “chosen at random” when it has been chosen uniformly

at random from the set of all vertices. Put simply, the degree distribution tells

us the probability that a randomly chosen vertex has a particular degree. The

degree distribution certainly plays an important role in real-world networks. For

example real-world networks often exhibit the Pareto principle: the idea that for

many events, roughly 80% of the effects arise from only 20% of the causes [45]. This

translates to finding a few nodes with very high degree, and the rest of the nodes

with relatively small degree. Initial attempts attempts to model this precisely made

use of the so-called power law distribution [1,7,48], however recent evidence indicates

that other heavy tailed distributions may be a better fit for the data [12,14].

The many properties of interest for a random graph are usually implicitly defined

as a consequence of specifying the procedure by which the graph is constructed.

Therefore it is only natural that if we wish to introduce degree distributions into

our study of random graphs, we must alter the procedure by which our graphs are

constructed. Indeed, we would like to extend our analysis of the giant component

in some natural way such that we can apply it to a random graph with any degree

distribution. We will first look at the degree distribution for Gn,p.

4.1.1 Degree Distribution for Gn,p
Consider the binomial random graph Gn,p. For a randomly chosen vertex v of Gn,p,
and a fixed k ∈ N,

pk = P(deg(v) = k) =

(
n− 1

k

)
pk(1− p)n−1−k.

So the degree distribution of Gn,p is D = Bin(n − 1, p). This is why Gn,p is called

the binomial random graph. If np→ λ as n→∞, then using (2.5) to estimate the

binomial coefficient we have that

lim
n→∞

(
n− 1

k

)
pk(1− p)n−1−k = lim

n→∞

(
n

k

)
pk(1− p)n−k

= lim
n→∞

nk

k!

(
λ

n

)k (
1− λ

n

)−k (
1− λ

n

)n
= lim

n→∞

(
nk

k!
· λ

k

nk

)(
1− λ

n

)−k (
1− λ

n

)n
=
λk

k!
· 1 · e−λ. (4.1)
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This is simply the familiar fact that the limit of a binomially-distributed random

variable with np = λ is a Poisson distribution with mean λ. For this reason,

the random graph Gn,p is sometimes called the Poisson random graph. This is

particularly common parlance in the physics and social science literatures. If np

does not tend to a constant, then under certain conditions we have that the binomial

distribution approaches a normal distribution as n→∞.

Theorem 4.2 (Barbour, Karoński, and Ruciński, 1989). Let S = Sn(d) be the

number of vertices of degree d in Gn,p. Let W := (S − E(S))/
√

Var(S). Then for

d ≥ 1, we have that W
d−→ N(0, 1) if and only if

nd+1pd →∞ and np− log n− d log log n→ −∞.

A slightly weaker but also sufficient condition for normality is that E(S) → ∞
and either np → 0 or np → ∞. We now present an algorithm for constructing

a random graph with an arbitrary degree distribution. The algorithm creates an

auxiliary probability space (random configurations) which is studied in its own right

in Section 4.3. The main reference for the following section is [22, Chapter 11].

4.2 The Configuration Model

Let d = (d1, d2, . . . , dn) be a sequence of positive integers such that
∑n

i=1 di = 2m

is even. Let

Gd = {simple graphs with vertex set [n] s.t. deg(i) = di, i ∈ [n]}

and let Gd be chosen randomly from Gd. We assume that di ≥ 1 (for i = 1, . . . , n,

since vertices of degree zero are not of interest and unnecessarily complicate matters,

and we also assume that
n∑
i=1

di(di − 1) = Ω(n),

which ensures that the graph is not too sparse.

The following algorithm is due to Bollobás [8], though was independently discovered

by Wormald [57] at the same time. Let d be as above. Let W be a set of elements

called points, such that |W | = 2m. Consider a partition W1,W2, . . . ,Wn of W such

that |Wi| = di for 1 ≤ i ≤ n. We call W1, . . . ,Wn cells. We fix a total order < on
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W , such that x < y if x ∈ Wi and y ∈ Wj with i < j. For x ∈ W , define ϕ(x)

to be the index such that x ∈ Wϕ(x). Let F be a partition of W into m pairs (a

configuration). Given F , we define the (multi)graph γ(F ) as

γ(F ) = ([n] , {(ϕ(x), ϕ(y)) : (x, y) ∈ F}) .

The formal definition is a little abstract and so the easiest way to get a feel for

what is going on here is via an example. One can think of the above process as

assigning to each vertex i, a number di of “stubs” or “half edges”. The configuration

algorithm then matches these stubs up at random as in the picture we have provided

below. Note that technically each stub in Figure 4.1 should have its own label, since

we need to distinguish between the configuration which we give in Figure 4.2, and

any other configuration which gives an isomorphic graph, but matches the stubs up

differently. For example, an isomorphic graph could be obtained by swapping the

two stubs which link vertex 1 and 5. This is a technicality, and the image below is

given more for intuition than rigour.

1

2

34

5

Figure 4.1: Stubs on 5 vertices with d = (3, 2, 1, 4, 2)

Definition 4.3. The configuration model is the algorithm (described above) which,

for a given degree sequence d, chooses a partition F of W uniformly at random and

constructs the (multi)graph γ(F ). This defines a probability space Ωn over the

set of all possible graphs (configurations) with a given degree sequence d. We will

denote a graph generated by the configuration model as G?
d rather than γ(F ) to

remain consistent with the notation for a simple graph Gd with degree sequence d.
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1

2

34

5

Figure 4.2: Configuration model matches stubs up at random

Let Ωn denote the set of all configurations defined above for d1, · · · + dn = 2m.

Since we are working with a uniform probability space over Ωn, it would be useful

to know |Ω|. To find this, consider the sequence

(1, 1, . . . , 1︸ ︷︷ ︸
d1

, 2, . . . , 2︸ ︷︷ ︸
d2

, . . . , n, . . . , n︸ ︷︷ ︸
dn

).

Take a permutation (σ1, σ2, . . . , σ2m) of this sequence, and let F be the partition

F = {{σ2i−1, σ2i} : i = 1, . . . ,m}. Note that all possible pairings can be achieved in

this way. How many different permutations could have given us this F? Firstly, any

permutation which reorders the sequence of pairs {σ2i−1, σ2i} would have given us

the same F . There are m! ways to do this. Moreover, any permutation which swaps

the order of {σ2i−1, σ2i} would also give the same F . There are 2m ways to do this

(think of a binary switch for each pair). These are all possible rearrangements that

would give us F , hence each distinct partition F arises in m!2m ways. It follows

that

|Ω| = |{permutations of 2m letters}|
|{partitions which give the same configuration}|

=
(2m)!

m!2m
.

For those comfortable with a bit of group theory, the number of partitions which

give the same configuration is the size of the automorphism group of the partition.

Next, notice that certain multigraphs are more likely to arise from the configuration

procedure than others. An easy way to see this is to consider the case with n = 2

and d = (3, 3). There are only two multigraphs with degree sequence d, up to iso-

morphism, pictured below. The multigraph on the left has 3× 3 = 9 corresponding

configurations (consider the edge which joins the two vertices), whereas the graph
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Figure 4.3: Two possible graphs with d = (3, 3)

on the right only has 3! = 6 corresponding configurations. The probabilities of

forming different simple graphs behaves much more nicely. The following relation-

ship holds between a simple graph G ∈ Gd and the number of configurations F for

which γ(F ) = G.

Lemma 4.4. If G ∈ Gd, then

∣∣γ−1(G)
∣∣ =

n∏
i=1

di! .

My proof takes a slightly different approach to that offered by Frieze & Karoński [22].

Proof. Suppose that F ∈ Ωn is a configuration such that γ(F ) = G. Consider any

point v in the cell W1. Since G is simple, this point is linked to a point in a different

cell Wi. Moreover, no other points in W1 are linked to any points in Wi. Hence

by replacing v with any other point v′ in W1, we have a new configuration which

gives the same graph G. There are |W1| = d1 such choices for v′ (including v).

Once this is fixed, move on to another point w in W1. By the same argument as

above, we have d1− 1 choices for replacing this point which will still yield the same

G. Continuing in this way, we see that we have d1! ways to arrange the points in

W1 such that we still have γ(F ) = G. The lemma follows by applying the same

argument to W2, . . . ,Wn. 2

What is more important than the above lemma is the following corollary.

Corollary 4.5. If F is chosen uniformly at random from the set of all configura-

tions Ωn, and G1, G2 ∈ Gd, then

P (γ(F ) = G1) = P (γ(F ) = G2) .
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This means that if we run the configuration model and condition on the event “G

is simple”, then the outcome is uniform over the resulting graphs, that is, over Gd.

Clearly this is only a useful exercise if the probability of forming a simple graph

is sufficiently large. We state the following theorem without proof, to convince

the reader that searching for simple graphs via the configuration model is indeed a

plausible strategy when d is sufficiently sparse.

Theorem 4.6 (Bollobás 1985). Suppose that ∆ = max{d1, . . . , dn} ≤ n1/7. If F is

chosen uniformly at random from the set of all configurations Ω, then

P(γ(F ) is simple) = (1 + o(1)) e−λ(λ+1),

where

λ =

∑n
i=1 di(di − 1)

2
∑n

i=1 di
.

Moreover, for any (multi)graph property P,

P(Gd ∈P) ≤ (1 + o(1))e−λ(λ+1)P(γ(F ) ∈P).

Thus if we are interested in properties of Gd, it suffices to look at whether the

property holds for the configuration model with degree sequence d. It is worth

mentioning that the proof here is quite involved. The modern technique employed

for proving Theorem 4.6 is a sort of double counting argument due to Mckay &

Wormald [39] known as “switching”. This is not the same technique that was used

by Bollobás. We also remark that the condition ∆ ≤ n1/7 can be relaxed quite

a bit when looking at the property “Gd has a giant component” (which we will

be studying shortly). This condition has in fact recently been improved to allow

∆ = o(n) so long as P(D ≥ 3) > 0 [10].

4.3 The Giant Component in The Configuration Model

It was Molloy & Reed [42,43] who first derived formulas for the threshold at which

the giant component emerges, and its size, in the configuration model. The approach

of Molloy & Reed is to “expose” a random configuration one component at a time

using a breadth-first-search algorithm reminiscent of a branching process, which

they specify in [42]. The extinction behaviour of the process is then analysed using

random walks, a standard Markov process. Since [42, 43], several improvements
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and alternate proofs have been discovered. A heuristic argument was provided by

Newman, Stogatz, & Watts [47] using generating functions, but the argument is

not fully rigorous. To the best of our knowledge, no fully rigorous proof along these

lines has been given. In this section, we describe the argument of Newman et al.,

and proceed to make it much more rigorous.

We mentioned in Section 4.1 that it important to be able to specify degrees for

modelling real-world networks. From a practical perspective, there have been

various attempts in the study of observed networks to estimate degree distribu-

tions ( [5, 12, 58]). The first and most obvious way to do so is to collect data on a

particular type of network and use this to estimate the degree distribution directly..

A more sophisticated, though less falsifiable, method is to develop a model of net-

work formation and to look at the properties of the model ( [7,13,56]). Ideally one

would like to check the predictions of their model against some data, though this

can be difficult as network data is costly to collect [2].

From a theoretical perspective, there are two approaches to studying the properties

of graphs with an arbitrary degree distribution. The first approach is to study

the properties of graphs with a given (fixed) degree distribution. This approach

is common among mathematical research. The idea is to fix a sequence of degree

sequences {dn}n∈N which converges to the desired distribution (in a precise sense),

and to look at the asymptotic properties of a uniformly random graph with degree

sequence dn. This is Gd. The second approach, which is more common in physics

research, is to first draw the degree of each vertex independently from a given

probability distribution on the non-negative integers, and use this random sequence

(d1, . . . , dn) as your degree sequence (drawing again if the sum of degrees is odd).

Then choose a graph uniformly at random from the set of graphs with this degree

sequence. Note that there are is no a priori upper bound on the degree of a vertex

in a multigraph, though for there to be any positive probability of constructing a

simple graph, we must have di ≤ n − 1 for all i = 1, . . . , n. Newman et al. state

without proof that when looking at properties of these graphs, the two methods are

equivalent in the limit as n→∞. The first approach is sometimes referred to as the

microcanonical ensemble for random graphs, whereas the second approach is referred

to (in the physics literature) as the canonical ensemble. We focus on the canonical

ensemble in what follows. In the process of making the argument of [47] rigorous,

we provide an original proof that the canonical ensemble is a special case of the

50



microcanonical ensemble. We will revisit the microcanonical ensemble in Chapter 5

where we discuss an application of our work.

There is one last distinction to be made here between simple graphs and the con-

figuration model. Note that Theorem 4.6 demonstrates the relationship between

properties of simple graphs with a given degree sequence, and graphs generated

by the configuration model with the same degree sequence. In particular, graph

properties do not hold with the same probability for the two types of graphs just

described. However, if the probability of having some property vanishes for the

configuration model (with a given degree sequence), then it also vanishes for simple

graphs with that degree sequence. In other words, we can always pull a “negative”

result across from the configuration model to Gd, but we cannot necessarily pull a

positive result across. Newman et al. [47] have a tendency to blur the line between

these two types of graphs, and never explicitly mention the configuration model.

To avoid ambiguity, we state explicitly here that throughout the remainder of this

chapter we will be working with the configuration model G?
d on a set of vertices

V = [n], where the degree sequence d = (d1, . . . , dn) is constructed by drawing

di (i ∈ [n]) independently from a distribution Dn ∈ {Dn}n∈N on the non-negative

integers, conditioned on an even sum of the degrees. We will call Dn (for any fixed n)

the degree distribution, and write its p.m.f. as {pk}k∈N, suppressing the dependence

on n. The p.m.f. determines the generating function for Dn (see Remark 2.19).

We assume that Dn converges in distribution to some well-defined distribution D,

which we will call the limiting degree distribution. Since we are only concerned with

properties of G as n → ∞, we can work with D rather than Dn without losing

any generality in our results. Defining Dn is more of a formality than a necessity,

in what follows we will work mainly with D and we may occasionally blur the

distinction between the two. We note that the authors of [47] do not mention Dn in

their paper, but we have defined it here to provide more rigour to their argument.

4.3.1 Generating functions

Let G = G?
d with d as above. Then the probability that a randomly chosen vertex

of G has degree k is given by pk. Newman et al. do not put any explicit restrictions

on the limiting distribution D, but their argument assumes that D has finite expec-

tation which is bounded away from zero. We reserve the expectation operator E for

distributions whose realisations are graphs, and so we will write 〈k〉 := E(D) for

51



the expected degree of a vertex. Recall that the generating function of D, which

we will call G0(z) is defined by

G0(z) =
∞∑
k=0

pk z
k. (4.2)

This function has a number of properties which were outlined in Section 2.2. In par-

ticular we will make use of Theorem 2.22 which describes how generating functions

behave when taking a random number of draws of some random variable.

Example 4.7. For a randomly chosen vertex v ∈ V and the graph Gn,p, one has

that

P(deg(v) = k) =

(
n− 1

k

)
pk(1− p)n−k, (4.3)

and hence the generating function for the degree distribution of a binomial random

graph is

G0(z) =
n−1∑
k=0

(
n− 1

k

)
pk(1− p)n−kzk = (px+ 1− p)n−1 (4.4)

as seen in Example 2.21. Note that the sum is cut off at n − 1 because Gn,p is a

simple graph and therefore a vertex can have at most n − 1 neighbours. This does

not have to be the case for the configuration model, unless of course we want to be

able to infer something about simple graphs (which we usually do).

Another distribution that will prove useful to us is the degree distribution of a

vertex found from choosing an edge at random and following it to one of its ends.

The probability that a randomly chosen vertex has degree k is pk, and there are

k edges along which this vertex could be reached by following a randomly chosen

edge. After normalising, it follows that if v is a vertex found by following a randomly

chosen edge, then

P(deg(v) = k) =
kpk∑
j jpj

. (4.5)

Hence the edge-following generating function is

∞∑
k=0

(
kpk∑
j pj

)
zk =

G′0(z)

G′0(1)
z. (4.6)

Now consider choosing a vertex u at random and following one of its incident edges

to a previously unexplored neighbour w. The degree distribution of this neighbour
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is exactly the same as that of choosing an edge at random and following it to one of

its ends. In this setting we are interested in the number of neighbours that a vertex

wis connected to, other its “predecessor” u. This is called the forward degree of the

vertex, and the corresponding distribution is called the forward degree distribution,

denoted D′n. One can imagine why this is a quantity of interest: if we wish to use a

branching process to find the asymptotic size of a component then at each step of

the process we are only interested in how many more neighbours a particular vertex

has, other than the ones we have already visited. If the forward degree of a vertex

is k, then the degree of the vertex is k + 1 (by counting the predecessor as well).

Thus the forward degree distribution is defined by

qk =
(k + 1)pk+1∑∞
j=0(j + 1)pj+1

=
(k + 1)pk+1∑∞

j=0 jpj
, (4.7)

which has generating function

∞∑
k=0

(
(k + 1)pk+1∑

j pj

)
zk =

∑∞
k=0 kpkz

k∑
j jpj

· 1

z
=
G′0(z)

G′0(1)
. (4.8)

Here we assume that assuming that z 6= 0 in order to divide throughout by it,

though taking the limit as z → 0 will agree with the above formula. Moreover,

noting that G′0(1) = 〈k〉 is the first moment of the distribution (that is, the average

degree of a vertex), we can write the generating function for the forward degree

distribution as

G1(z) :=
1

〈k〉
G′0(z). (4.9)

We see that G1(z) tells us the generating function for the number of “first (forward)

neighbours” of a vertex v. What about the number of second neighbours, that is,

neighbours of neighbours? What about third neighbours, and so on? This is a

question we will return to after our more rigorous treatment of this section.

We now turn to the question of the threshold for the emergence of the giant com-

ponent.

4.3.2 Component sizes

Let us introduce now a new distribution of interest: the distribution over the sizes

of connected components in the graph G?
d as n → ∞ not including vertices in

components of infinite size (if there are any). We will make this precise in a moment,

but before proceeding further, we remark here that Newman et al. are less careful
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with their description than we have been here. They exclude vertices in “the giant

component” from this distribution, but excluding vertices in components of infinite

size is what is actually needed in order to apply their methodology. The distinction

is important, since the method does not prove that these vertices are in a single

common component. Hence we more carefully state “vertices in components of

infinite size”. Indeed it will turn out that these vertices will in fact lie in a unique

giant component; we will return to this question at the end of Section 4.3.3.

Let G = G?
d and let d be a degree sequence drawn from Dn. For n ∈ N, let cn,k

be the probability that a randomly chosen vertex v ∈ G?
d is in a component of size

k ∈ N, and let ck := limn→∞ cn,k. So {ck}k∈N the distribution over the sizes of

connected components in the graph G?
d as n→∞. Then define

H
(n)
0 (z) =

n∑
k=0

cn,kz
k

to be the generating function for the distribution of sizes of components in Gd. The

limiting generating function for the distribution of component sizes is given by

H0(z) = lim
n→∞

H
(n)
0 (z) = lim

n→∞

n∑
k=0

cn,kz
k =

∞∑
k=0

ckz
k.

The function H0 is the main object of interest in this section. By excluding vertices

in “components of infinite size” from {ck}k∈N, we really mean thatH
(n)
0 (1) = 1− o(1).

That is, that limn→∞H
(n)
0 = 1, or equivalently

H0(1) =
∞∑
k=0

ck = 1. (4.10)

We require that (4.10) holds because we want to ensure we are in the “subcritical”

regime, where all branching processes go extinct with probability 1. The necessity

of this condition will become clear shortly, as we will assume that G?
d is tree-like

and is therefore well approximated by a branching process.

We introduce one other generating functions before we proceed. Consider again

choosing a random edge and following it to a vertex which is incident with it.

Let H
(n)
1 (z) and H1(z) be the generating function for the distribution of sizes of

components reached in this way, defined analogously to H
(n)
0 and H0. The way that

we have defined H0 and H1 here differs slightly from Newman et al. [47]. This is
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because they do not consider Dn in their paper, but rather work immediately with

the limiting distribution D. This will not affect our analysis of component sizes.

Assume for now that G is a tree, or at least “locally” a tree (we make this precise

in Lemma 4.12 in Section 4.3.4). Then by following a randomly chosen edge, we

reach a single vertex v0, plus any number of other treelike “clusters” with the same

size distribution, joined to this vertex by single edges. Newman et al. represent

this idea pictorially as below. Let qk be (as before) the probability that the initial

Figure 4.4: Figure taken from [47]. Pictorial representation of following a randomly
chosen edge to vertices and tree-like clusters.

vertex we find has forward degree k. Then a forward degree of k for our initial

vertex v0 will result in k random draws from the distribution generated by H1(z).

It follows by applying Theorem 2.22 that H1(z) must satisfy

H1(z) = z
∞∑
k=0

qk (H1(z))k = z G1(H1(z)). (4.11)

This has been called a self-consistency condition and should be reminiscent of find-

ing the extinction probability of a branching process. Rather than using Theo-

rem 2.22 one can alternatively look at Figure 4.4 to see almost immediately that

we must have

H1(z) = z q0 + z q1H1(z) + z q2[H1(z)]2 + z q3[H1(z)]3 + . . .

which yields the same result.

If we begin a BRP at a randomly chosen vertex, then each edge incident with the

vertex would give us one treelike “cluster”, and so by the same reasoning as above,

H0(z) = z G0(H1(z)). (4.12)
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Remember that H0(z) is the function we are most interested in, as it tells us the

distribution of component sizes. If we have the generating function G0(z) for the

degree distribution, then (at least in theory) we can calculate G1(z) and solve (4.11)

to get H1(z), finally substituting this into (4.12) to obtain H0(z). Note that this

entire process depends on knowledge of the degree distribution and therefore high-

lights the need to be being able to estimate degree distributions. The probability

that a vertex chosen at random belongs to a component of size s is then the coeffi-

cient of zs in H0; that is, the s-th derivative of H0, evaluated at 0. Calculating this

value is of course a computationally laborious and sometimes impossible exercise

for large s, though we can approximate these derivatives by numerical integration

of the Cauchy formula, giving us the probability distribution Ps of component sizes:

Ps =
1

s!

dsH0

dzs

∣∣∣∣
z=0

=
1

2πi

∮
H0(z)

zs+1
dz. (4.13)

This integral will contain no poles of the generating function for |z| ≤ 1 (and pos-

sibly larger values) and thus can always be taken over the contour |z| = 1. If it is

possible to take larger contours then they will yield better numerical approxima-

tions, but it is not always possible to take them.

Example 4.8 (Original). For a positive integer k we write (k)!! = k(k − 2)(k −
4) · · · j, where j = 1 if k is odd, and j = 2 if k is even. Suppose G(z) = 2

π
arcsin z =

2
π

∑∞
k=0

(2k−1)!!
(2k)!!

z2k+1

2k+1
. Then the largest contour over which G(z) is integrable is the

unit circle (the limit as z → 1 from the right does not exist).

4.3.3 The threshold for the emergence of the giant component

We have already established that it is difficult to find a closed form expression for

(4.11) and (4.12). However, it is possible to find a closed form solution for the

average size of the component in which a randomly chosen vertex is contained. If

there are no vertices in components of infinite size, then we can simply use H0 and

calculate the average as usual:

〈s〉 = H ′0(1) = G0(H1(1)) +G′0(H1(1))H ′1(1) = 1 +G′0(1)H ′1(1). (4.14)

The final inequality comes from the fact that G0(H1(1)) = H0(1) (by (4.12)), and

H0(1) = 1 because the coefficients of zk in H0 form a probability distribution. We
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have from (4.11) that

H ′1(1) = 1 +G′1(1)H ′1(1) =
1

1−G′1(1)
, (4.15)

and hence

〈s〉 = 1 +
G′0(1)

1−G′1(1)
. (4.16)

We have by definition of G1 that[
d

dz
G1(z)

]
z=1

=
1

〈k〉
G′0′(1) =

G′0′(1)

G′0(1)
. (4.17)

Therefore we can write (4.16) as

〈s〉 = 1 +
(G′0(1))2

G′0(1)−G′′0(1)
. (4.18)

We can see that this equation for 〈s〉 diverges when G′0(1) = G′′0(1). But this

identity holds precisely when the expected number of first neighbours of a vertex is

equal to the expected number of second neighbours! That is, we find exactly what

we might have expected in considering a branching process; if the expected number

of offspring exceeds 1, the process will continue forever and the component size

will be infinite. This may not be immediately clear but we will discuss it further

in Section 4.3.5 (see (4.30)). Since

G′0(1) =
∞∑
k=0

kpk and G′′0(1) =
∞∑
k=0

k(k − 1)pk,

the expected size of a component diverges to infinity if

∞∑
k=0

kpk =
∞∑
k=0

k(k − 1)pk (4.19)

that is, when,
∞∑
k=0

k(k − 2)pk = 0. (4.20)

Note that from (4.18), the average component size is finite if and only if G′0(1) >

G′′0(1). It follows that as n→∞, vertices in components of infinite size exist if and

only if G′0(1) > G′′0(1), or equivalently (by (4.20)), when
∑∞

k=0 k(k − 2)pk > 0.
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Remarkably, this is exactly the threshold for the emergence of the giant component

that Molloy & Reed (1995) found using their rigorous argument.

Recall that Newman et al. excluded “a giant component” from the distribution over

component sizes in their analysis, whereas we excluded “vertices in components of

infinite size”. I provide an original analysis of these vertices in components of

infinite size. If (4.18) diverges, then this means that we expect a randomly chosen

vertex to be in a component of infinite size. Let X be a random variable counting

the number of vertices in components of infinite size. Then X =
∑

v∈V Iv where Iv

is an indicator variable for the event “v is in a component of infinite size”. Hence

E(X) =
∑
v∈V

E(Iv) = nP(v is in a component of infinite size). (4.21)

Intuitively, if the expected component size is infinite, then we expect that the

extinction probability ρ of a BRP beginning at a randomly chosen vertex is strictly

less than 1 (Corollary 3.4). It follows that for a randomly chosen vertex v, the

probability of survival of the BRP is 1− ρ for some ρ ∈ (0, 1). Hence

P(v is in a component of infinite size) = 1− ρ > 0

and therefore E(X) is of linear order. So indeed, we must have at least one giant

component.

When it exists, the giant component is unique, however the argument required

to prove this is quite involved. We mentioned at the beginning of the chapter

that Molloy & Reed use a variation of exploring a component in the configura-

tion model based loosely on branching processes. Their proof of uniqueness of the

giant component can be found in [42, Lemma 11]. The approach of Bollobás &

Riordan [10] applies a colouring and sprinkling technique based on the two-round

exposure method described in Section 2.4.4. Other approaches have been taken to

prove that the giant component is unique when it exists [21, 31, 33], though each

takes several pages to explain rigorously. Thus we do not prove here that the giant

component is unique: we simply highlight that this is true and refer the reader to

the above sources should they wish to see the argument for themselves. Whilst the

sprinkling method of Bollobás & Riordan is beyond the scope of this thesis, these

authors provide an excellent rigorous treatment of the threshold for the emergence
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of vertices in components of linear order. We present part of their treatment be-

low, as it allows us to deal with some of the unjustified assumptions of the above

argument.

4.3.4 Formal analysis of BRP’s with the configuration model

The following analysis is based on Bollobás & Riordan [10]. At the beginning of Sec-

tion 4.3, we introduced the canonical and microcanonical ensembles. The authors

provide their results within the microcanonical ensemble, but we have reframed the

results in terms of the canonical ensemble so that we may be consistent with our

analysis of [47]. We will need to make use of some of the features of the canonical

ensemble to provide an analogous but not identical statement to [10, Lemma 4].

First, we provide a lemma of our own establishing some asymptotic properties of

the canonical ensemble.

Lemma 4.9 (Original). Let G = G?
d. Let nk(d) be the (random) number of vertices

of degree k in d, and m(d) the (random) number of edges in G. Then w.h.p.

nk(d)

n
= pk + o(1), (4.22)

and
m(d)

n
=
〈k〉
2

+ o(1). (4.23)

Proof. Both results follow almost immediately from Hoeffding’s inequality (The-

orem 2.40). We first prove (4.22). Note that since each vertex has degree k in-

dependently with probability pk, the number of vertices of degree k is binomially

distributed with success probability pk. Let Iv be an indicator variable for the event

that vertex v has degree k. Then nk(d) =
∑

v∈V Iv and so the average nk(d) is given

by 1
n

∑
v∈V Iv. Therefore by linearity of expectation we have that E(nk(d)) = pk.

Moreover, since each Iv is bounded on [0, 1], we have by Hoeffding’s inequality (The-

orem 2.40) that for any t > 0,

P
(∣∣∣∣nk(d)

n
− pk

∣∣∣∣ ≥ t

)
≤ 2 exp

(
−2nt2

)
= o(1).

proving (4.22).
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The proof of (4.23) follows from (4.22). Notice that m(d) = 1
2

∑∞
k=0 knk(d). Hence

the average, m(d), is given by

m(d) =
1

n

(
1

2

∞∑
k=0

knk(d)

)
=

1

2

∞∑
k=0

k
nk(d)

n
.

By (4.22), we have that

m(d) =
1

2

∞∑
k=0

kpk + o(1) =
〈k〉
2

+ o(1),

proving (4.23). 2

Lemma 4.9 can now be applied to give an asymptotic expression for the ratio of the

number of vertices of degree k to the total degree.

Corollary 4.10 (Original). Let nk(d) and m(d) be as above. Then w.h.p.

nk(d)

2m(d)
=

pk
〈k〉

+ o(1). (4.24)

In words, (4.22) says that D captures the asymptotic proportion of vertices of a

certain degree, and (4.23) says that the number of edges in the graph is related to

D in the natural way.

We now establish that searching for the t−th neighbours of a vertex is well ap-

proximated by a branching process. Bollobás & Riordan have an alternative, but

equivalent, characterisation of branching processes which will prove useful, so we

give it here. We use notation from Section 3.1.4.

Definition 4.11. Let {Gi}i∈N be a (not necessarily uniform) BRP on {Xi}i∈Z+ . A

random rooted tree T is the (random) graph determined by this branching process

in the natural way, with G0 distinguished from the other vertices as the “root”.

That is, by assigning a vertex to each offspring born in the process, and assigning

an edge between every parent and their offspring.

Let T = TD be a random rooted tree on X1, X2, . . . with Xi ∼ D′, the forward

degree distribution (independently for all i). Our goal is to show that this is a
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“good” approximation of the BRP beginning at a random vertex of a graph G?
d

generated by the configuration model. To do this, we first make the following

adjustment. Suppose that X1 is distributed according to D rather than D′, so

that the tree mirrors the process of choosing a random vertex in a graph with

degree sequence drawn from D, and following the edges with which it is incident.

The reader may be wondering why we did not have to make this adjustment when

proving our results for Gn,p in Chapter 3. The intuitive answer is that since the

limiting degree distribution of Gn,p is Poisson (see (4.1)), one can easily verify that

G0(z) = G1(z) (now going back to Examples 3.5 and 3.6). So, in fact, Gn,p provides a

simple case where the forward degree distribution is equal to the degree distribution

in the limit.

Next we present the lemma establishing that the configuration model produces a

locally tree-like graph. Given a graph G, let Γ≤t(v) = ΓG≤t(v) denote the subgraph of

G induced by the vertices within distance t of v; that is, up to the “t-th neighbours”

of v. Similarly, let TD|t be the subtree of TD induced by the vertices within distance

t of the root (that is, the first t generations of the process).

Lemma 4.12 (Bollobás & Riordan, 2015). Let v be a vertex of G = G?
d chosen

uniformly at random. Then we may couple the random graphs Γ≤t(v) and TD|t so

that they are isomorphic as rooted graphs with probability 1− o(1) as n→∞.

Before we offer a formal proof, we provide an original argument to give some in-

tuition as to why this is the case. Really what we want to show is that a BRP

beginning at a randomly chosen vertex of G finds the right number of new vertices

in each generation. We will show that this is indeed the case for the first generation

and then provide the proof of the lemma. Consider the k different points in the

cell corresponding to v. If these points loop back to v with too high a probability,

then we may not get a new vertex in the first step as we explore G. We show

this happens with probability o(1). Consider the first stub of v. If v has degree

k, then the probability that the first stub was linked to another stub of v by the

configuration procedure (hence forming a loop) is

P(first stub of v forms a loop | deg(v) = k) =
k − 1

2m− 1
.

61



Hence the probability that the first stub of v forms a loop is

n∑
k=1

(
k − 1

2m− 1

)
pk =

1

2m− 1

(
n∑
k=1

kpk −
n∑
k=1

pk

)

=
〈k〉 − 1 + p0

2m− 1
.

Now, by (4.23) in Lemma 4.9, we have that

〈k〉 − 1 + p0

2m− 1
=
〈k〉 − 1 + p0

n〈k〉+ o(n)− 1
≤ C

n
= o(1),

for a large enough positive constant C. Since the first point of the cell corresponding

to v gives us the largest number of choices for a potential loop, the probability that

any of the other points form a loop is also o(1). This establishes that at every

step when we look at the neighbours of v, we expect them to be new neighbours

with probability 1− o(1). We now present the proof of Lemma 4.12 which uses the

coupling technique defined in the preliminaries (see Definitions 2.28 and 2.31).

Proof of Lemma 4.12. By definition, a randomly chosen vertex has degree distri-

bution given by Dn. Since Dn
d−→ D, we can find a vertex v ∈ V (G) which has the

same degree distribution as the root of TD with probability 1 − o(1). From here,

the idea is to reveal the vertices in Γ≤t(v) and TD|t simultaneously, one vertex at a

time, and show that the coupling fails with probability o(1) at any given step. Let

Rk,j denote the number of vertices of degree k which have been revealed at the j-th

step of looking at unpaired stubs; meaning that we have found these vertices in

exploring Γ≤t(v). Moreover, as in Lemma 4.9, let nk(d) be the number of vertices

of degree k in d. At the j-th time we reveal the partner of a single unpaired point

in a cell, the probability that this is a “new” vertex of degree k, is precisely

k (nk(d)−Rk,j)

2m+ 1− 2j
. (4.25)

Note that for any finite j, we have that Rk,j ≤ j = O(1). Then making use of both

(4.22) and (4.23) in Lemma 4.9, we see that

k (nk(d)−Rk,j)

2m+ 1− 2j
=
knpk − kRk,j

n〈k〉+ 1− 2j
+ o(1)
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=
kpk − kRk,j

n

〈k〉+ 1−2j
n

+ o(1) (4.26)

=
kpk
〈k〉

+ o(1).

That is, that at step j, the expected number of new vertices of degree k is simply

qk−1+o(1). This is asymptotically equal to the forward degree distribution D′ which

is also the offspring distribution for TD (except for the root which we already dealt

with separately). It follows that the coupling succeeds at step j with probability

1−o(1). To complete the proof, note that for any ε > 0, there is a constant Mε such

that with probability at least 1 − ε, the size of the finite tree TD|t is at most Mε.

Thus for any ε > 0, the probability that the coupling fails is bounded above by the

probability that the coupling fails in the first Mε steps, and that |TD|t| ≤Mε. That

is, for n large enough, the probability that the coupling fails for the neighbours

within distance t of the root is bounded above by ε + Mεo(1) = o(1), completing

the proof. 2

The above lemma gives us the following corollary.

Corollary 4.13. Let v be a vertex of G = G?
d chosen uniformly at random. If t ≥ 1

is a constant, then w.h.p. the neighbourhood Γ≤t(v) of v in G is a tree.

What Corollary 4.13 tells us is that when exploring the second generation of a BRP

beginning at a vertex v in G?
d, we are most likely to find vertices that have not

been visited yet, and moreover that this pattern continues for any neighbourhood

of finite size. This is precisely why Equations (4.11) and (4.12) hold in the Newman

et al. [47] heuristic. In order to write down Equations (4.11) and (4.12) we assumed

that G had a locally tree-like structure, which is what we have proved to be the

case here.

We continue with a few corollaries which establish that the extinction probability of

a branching process captures the asymptotic number of vertices contained in large

components. Consider a rooted graph G, and the rooted graph property Pk that

“the component of the root contains exactly k vertices” (k = 1, 2, . . . ). Remember

that we associate a property with the set of rooted graphs (up to isomorphism)

which have that property. For a rooted graph property P we write (G, v) ∈ P
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to mean that the graph G rooted at v has property P. The following is then an

immediate consequence of Lemma 4.12.

Corollary 4.14. Let v be a vertex of G = G?
d chosen uniformly at random. Then

P ((G, v) ∈Pk)
d−→ P(TD ∈Pk)

for all k = 1, 2, . . . as n→∞. Equivalently, writing Nk = Nk(G) for the (random)

number of vertices in G which are in components of size k, we have

E
(
Nk

n

)
= P(TD ∈Pk) + o(1).

Proof. The probability that (G, v) ∈Pk depends only on the rooted graph Γ≤t(v)

for some sufficiently large t. Since this can be coupled isomorphically with TD|t the

first statement follows immediately. The equivalence of the two statements comes

from applying linearity of expectation to Nk =
∑

v∈V Iv where Iv is the indicator

variable for the event “v is in a component of size k”. 2

In fact, the above statement will hold more generally for rooted graph property

which depends only on a finite neighbourhood of a randomly chosen vertex. So both

Corollary 4.13 and Corollary 4.14 are special cases of a more general statement.

What Corollary 4.14 means is that the average number of vertices in components

of size k is given by the probability that the random rooted tree TD goes extinct

after k steps. Let ρk = P(TD ∈ Pk) be the probability that TD goes extinct after

producing exactly k offspring (including the initial vertex) and let ρ(D) = limk→∞ ρk

be the probability that TD never goes extinct. It will be useful to establish another

consequence of Corollary 4.14 before we present our final result for this subsection.

Corollary 4.15 (Original). Let v be a vertex of G = G?
d chosen uniformly at

random. Then for any ε > 0, there exists δ > 0 (independent of n) such that for n

sufficiently large,

P (|Nk(G)− ρkn| ≥ εn) ≤ e−δn.
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Proof. Fix ε > 0. It follows from Corollary 4.14 that there exists a sequence {εn}n∈N
such that εn → 0, and

ρk = E
(
Nk

n

)
− εn.

Take n large enough such that |εn| < ε, then we have that ε− |εn| > 0. Hence

P
(∣∣∣∣Nk

n
− ρk

∣∣∣∣ ≥ ε

)
= P

(∣∣∣∣Nk)

n
− E

(
Nk

n

)
+ εn

∣∣∣∣ ≥ ε

)
≤ P

(∣∣∣∣Nk

n
− E

(
Nk

n

)∣∣∣∣+ |εn| ≥ ε

)
= P

(∣∣∣∣Nk

n
− E

(
Nk

n

)∣∣∣∣ ≥ ε− |εn|
)
.

Here, we have used the triangle inequality to break up the absolute value and move

the εn to the other side of the inequality. Then since ε− |εn| > 0, we have that by

Hoeffding’s inequality (Theorem 2.40)

P
(∣∣∣∣Nk

n
− ρk

∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−2n(ε− |εn|)2

)
.

Let δ′ = 2(ε − |εn|)2. Take n large enough such that δ′n ≥ 2 log 2, this is possible

because εn → 0 as n→∞. Then letting δ = δ′/2, we have that

2 log 2 ≤ δ′n = 2(δ′ − δ)n. (4.27)

Dividing both sides by 2 and exponentiating, we have

2 ≤ e(δ−δ′)n ⇒ 2e−δ
′n ≤ e−δn,

proving the result. 2

We have obtained a concentration result for Nk(G) in the canonical ensemble. It is

worth noting that Bollobás & Riordan have to go through significantly more work to

get an exponential bound (as in our Corollary 4.15) for the microcanonical ensemble

(see [10, Theorem 2]). To our knowledge, we are the first to look at this statement

specifically in the canonical ensemble and prove that an exponential bound can be

attained in this way. The reason that this is important is because one can use this

bound to prove that the same statement holds for simple graphs generated by the

configuration model. Theorem 4.6 may give the reader a hint as to why this is,

though we do not go into any more detail of the proof here.

65



Now that we have a better understanding of why the generating function heuristic

argument of [47] works, we present a few more results that can be derived using it.

4.3.5 Average number of t-th neighbours

We have now seen that for any constant neighbourhood distance ≤ t from an

arbitrary vertex, w.h.p. Γ≤t(v) is a tree. We can return then to the question of

the number of second, third, fourth etc. neighbours of a vertex. Beginning at a

randomly chosen vertex v, it follows from Lemma 4.12 that the number of “new”

(previously unseen) neighbours of v is (asymptotically) distributed according to D,

and the number of new “neighbours of a neighbour” is (asymptotically) distributed

according to D′. This means that once we choose a random vertex, we draw an

integer k ∼ D, and then draw k observations of D′ for the number of second

neighbours. Hence by Theorem 2.22, the generating function for the probability

distribution over the number of second neighbours of a vertex is

G0(G1(z)) =
∞∑
k=0

pk (G1(z))k . (4.28)

It follows by similar reasoning that the generating function for the number of third-

nearest neighbours will be G0(G1(G1(z))), and in general, the number of t-th neigh-

bours, that is, the neighbours which are exactly distance t away from v, will be

generated by

G0(G
(t−1)
1 (z)) = G0(G1(· · · (G1︸ ︷︷ ︸

t−1

(z))). (4.29)

Of course, we can use this formula to compute the moments of these distributions.

For example, the average number of second neighbours is given by[
d

dz
G0(G1(z))

]
z=1

= G′0(G1(1))G′1(1) = G′′0(1). (4.30)

It is interesting to note that the average number of first neighbours is G′0(1), and

the average number of second neighbours is G′′0(1). This is in fact the extent of this

pattern; the average number of third neighbours turns out to be (G′1(1))2G′0(1).

Example 4.16. We have already seen in Example 2.21 that the p.g.f. for the degree

distribution of Gn,p is G0(z) = (pz + 1 − p)n−1. From this we have that G′0(1) =

p(n− 1) is the average number of first neighbours, and p2(n− 2)(n− 1) the average

number of second neighbours.
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4.3.6 Generating Functions for the Giant Compononent

It may come as a surprise that the formalism we have introduced for analysing the

size of components via generating functions still works when we have vertices in

components of infinite size. In this case, H0(z) generates the size of components

excluding components of infinite size. This implies of course that H0(1) 6= 1, since

by existence of components of infinite size, there is some constant fraction of vertices

not represented by H0 (see (4.21)). One can prove that these vertices will be in a

single common component (see for example [10, Theorem 2]), so for the remainder

of this chapter, we will refer to these vertices as being in the giant component.

We can remedy the fact that H0(1) 6= 1 as follows. Let β be the fraction of vertices

contained in the giant component, then H0(1) = 1− β. This allows us to calculate

the size of the giant component from (4.11) and (4.12). Let ρ be the extinction

probability of a branching process with offspring distribution D′. We know then

from our analysis in Section 3.1 that ρ := H1(1) is the smallest positive real solution

of

ρ = G1(ρ), (4.31)

or more explicitly,

ρ =
∞∑
k=0

kpk
〈k〉

ρk−1. (4.32)

Therefore, using (4.12), we have that the size of the giant component is given by

β = 1−H0(1) = 1−G0(H1(1)) = 1−G0(ρ). (4.33)

What can we say about the average size of components that are not in the giant

component? From (4.12) we have that

H ′0(1) = G0(H1(1)) +G′0(H1(1))H ′1(1), (4.34)

and hence by (4.11), we conclude that the average size of a component (excluding

the giant component) is given by

〈s〉 =
H ′0(1)

H0(1)
=

1

H0(1)

[
G0(H1(1)) +

G′0(H1(1))G1(H1(1))

1−G′1(H1(1))

]

=
G0(ρ)

1− β
+

G′0(ρ)G1(ρ)

(1− β) (1−G′1(ρ))
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= 1 +
G′0(ρ)ρ

(1− β) (1−G′1(ρ))

= 1 +
〈k〉ρ2

(1− β) (1−G′1(ρ))
. (4.35)

Here we have used the fact that H1(1) = ρ and H0(1) = 1 − β (as in (4.33)) to

move from the first line to the second, and both (4.31) and (4.33) to move from the

second to third. In the final line we have made use of the fact that

G′0(ρ) =
∞∑
k=0

kpkρ
k−1 = 〈k〉

∞∑
k=0

kpk
〈k〉

ρk−1 = 〈k〉ρ,

with the final equality above coming directly from (4.32). Note that (4.35) agrees

with our previously found (4.18) precisely when S = 0 and ρ = 1, that is, when

there is no giant component and extinction is certain. We now present Theorem 3.11

as an example using this new framework.

Example 4.17. Let Gn,p be a binomial random graph with np → λ, where λ is

a constant. Then we know from Example 3.6 that in the limit, the degree distri-

bution has generating function given by G0(z) = eλ(z−1). Moreover, we mentioned

after Definition 4.11 that when np → λ, the forward degree distribution and the

degree distribution are equal for Gn,p. Hence we find that

ρ = G1(ρ) = G0(ρ) = eλ(ρ−1)

is solved by (using (4.33))

β = 1−G0(ρ) = 1− ρ

where β satisfies

β + e−βλ = 1, (4.36)

a familiar result indeed. Moreover, noting that

G′1(ρ) = λeλ(z−1) = λρ, (4.37)

we can apply (4.35) to find the average component size in Gn,p. Since np → λ, we

have that 〈k〉 → λ, and hence as n → ∞, the average component size in Gn,p is
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given by

〈s〉 = 1 +
λρ2

(1− β)(1− λρ)

= 1 +
λρ2

ρ(1− λρ)

=
1

1− λ(1− β)
. (4.38)

This is a result that we did not previously calculate in Chapter 3.

This is in fact a well known result [9], and similar results can be calculated for

other common distributions. It is worth mentioning that various other quantities

of interest can be calculated using this framework. In particular, we can find closed

form expressions for the asymptotic number of t-th neighbours, the average path

length, and even describe the behaviour of H0(z) close to the phase transition.

Aside from its stark simplicity, a nice feature of the above framework is that it

translates seamlessly into modelling diffusive processes. We discuss an application

of our results from this section in Chapter 5.

4.3.7 Limitations and Extensions

We briefly mention here a few of the limitations of the analysis in this chapter

and the extensions which have been made to the results of Molloy & Reed [42,43].

Firstly, the canonical ensemble loses some of the generality of the microcanonical

ensemble, though for practical purposes and modelling it is easier to work with. The

original result of Molloy & Reed concerned sequences {dn}n∈N of degree sequences

dn = (d0(n), d1(n), . . . ) with di(n) = 0 for all i ≥ n and
∑

i≥0 di(n) = 2m. They

proved that when these degree sequences converge “nicely” to a distribution D,

then the threshold
∑

k k(k − 2)pk = 0 (as in (4.20)) for the emergence of the giant

component held under two conditions. Firstly, they required that di(n) had to be

“sparse”, meaning that ∑
k

kdi(n) = nK(1 + o(1))

for some constant K. Secondly we must have di(n) = 0 whenever i > n1/4−ε. This

final condition is really the most restrictive of all of the conditions imposed by

Molloy & Reed in [42], as it allows a maximum degree of at most n1/4−ε. Molloy

& Reed highlight in their results that the threshold for the emergence of the giant
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component does not behave nicely for certain degree sequences with maximum

degrees above n1/4−ε. For example, consider the degree sequence with d1(n) =

n− dn0.9e, di(n) = dn0.9e if i = d
√
ne, and di(n) = 0 otherwise. Then it is easy to

see (using notation from Lemma 4.9) that n1(d)/n→ 1 and ni(d)/n→ 0 for i > 1

as n→∞. Hence the threshold equation gives

∑
k

k(k − 2)pk = −1 < 0.

However, one can show that there are enough vertices of degree
√
n to ensure that

a giant component containing n− o(n) vertices exists w.h.p. It is clear that at the

time of [42, 43], the threshold had not been fully understood nor characterised; at

least when d is not sufficiently sparse.

Bollobás & Riordan [10] (among others, for example [21, 31, 33]) impose signifi-

cantly weaker restrictions on the degree sequence dn for the emergence of the giant

component. (4.23) implies that the maximum degree of a graph generated within

the canonical ensemble is o(n). In fact, Equations (4.22) and (4.23) are the only

restrictions imposed by Bollobás & Riordan, though they are stated in terms of

convergence of a given (fixed) degree sequence {dn}n∈N of degree sequences dn,

rather than for a random degree sequence d. Indeed, in [10], the six or so restric-

tions of Molloy & Reed were replaced by these two simple convergence conditions,

though these still do not fully characterise the emergence of the giant component.

For example, the so called “power-law”, and other networks with heavy tailed dis-

tributions, which we mentioned earlier in Chapter 4 are not covered by the results

of either Molloy & Reed or Bollobás & Riordan.

Joos, Peranau, Rautenbach & Reed [33], settled the question of finding a threshold

function for the emergence of the giant component for arbitrary degree sequences.

Consider the following example from their paper [33].

Example 4.18 (Joos et al. [33]). Let n = k2, where k is a large odd integer. Take

d1(n) = d2(n) = · · · = dn−1(n) = 1, and dn(n) = 2k. Then∑n
k=1 dk(dk − 2)∑n

k=1 dk
=

4k2 − 4k − (n− 1)

2k + n− 1
≈ 3,
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and so the Bollobás & Riordan or Molloy & Reed approach would both suggest that

with probability 1 − o(1) there is a giant component. However, with probability 1

any graph G on the above degree distribution is the disjoint union of a star with 2k

leaves and n−2k−1
2

components of order 2 and hence it has no giant component.

The threshold condition imposed by [33] is based on looking at how long one expects

to find “new” vertices in a BRP on a given graph. They explain,

Intuitively, since the probability that we explore a vertex is essentially

proportional to its degree, in lower bounding the length of the period

during which the expected increase remains positive, we could assume

that the exploration process picks at each step a highest degree vertex

that has not been explored yet. Moreover, note that vertices of degree 2

have a neutral role in the exploration process as exposing such a vertex

does not change the number of open edges, provided we assume that

our component locally looks like a tree (which turns out to be a good

approximation around the critical window).

The statement of the condition for the emergence of the giant component is rather

technical and we do not provide it here. We suggest that an area for further research

would be a more intuitive and equivalent criterion which still holds for an arbitrary

degree distribution. It may be useful to have a criterion which also improves on the

computational feasibility so that one may more easily check whether a graph on a

given degree distribution yields a giant component w.h.p..

Recall that the reason we wanted to study the giant component for arbitrary degree

distributions was because the degree distribution is an important characteristic of

real world networks that is not captured by Gn,p. We turn now to an application

of the methods we have presented in this chapter to the field of Game Theory, an

important area in the study of human behaviour. This field has been studied by

economists, psychologists, computer scientists, and philosophers alike. We focus on

an economic approach in what follows.
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Chapter 5

Information Cascades and Diffusion Games

In this chapter, we analyse a model of diffusion on networks and discuss the eco-

nomic implications of our results.

We discussed many of the properties exhibited by real world networks at the begin-

ning of Chapter 4. Random graphs have become a central technique in modelling

complex networks (see [28, Chapters 6 - 8] for a detailed treatment). In the case

where one has data on a network, in particular, if one knows the degree di of each

member in a network, the Configuration Model (Section 4.2) serves as a good bench-

mark to test whether or not the observed network exhibits any additional structure

than a network chosen uniformly at random over the simple graphs with the degree

sequence (d1, . . . ,dn). In economics models, a variable is called exogenous if it im-

posed on the model, rather than being determined by the model. In what follows,

we will take the network structure as exogenous, determined by a degree sequence

from which the configuration model generates a graph, as in Section 4.2.

The process of the spread of information (gossip, disease) over a network is called

diffusion. When looking at diffusion on random graphs, one is usually interested in

when an epidemic or contagion can occur. An epidemic is defined to be a connected

set of infected vertices which makes up constant fraction of all the vertices in the

graph. In other words, an epidemic is a giant component of “infected” individuals.

In the economics literature, an epidemic is often called a large cascade. We will use

this language in Section 5.1.

The model of diffusion of information developed by Watts [55] has recently been

generalised by Sadler [50]. In this chapter, we present Sadler’s model for “single-
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type diffusion games”, as in [50]. An original finding of Sadler [50] is that when

information has spread to a strategic player, that player learns something about

their position in the network. This may not be immediately clear, but we will go

into further detail on this in Section 5.2.2. Sadler calls this effect viral inference.

In the conclusion to the thesis, we present some original remarks suggesting how

one might generalise Sadler’s results for the single-type diffusion game, to the case

where individuals have some information about the time at which the they are

“exposed”. Sadler’s paper is a marriage of the fields of probabilistic combinatorics

and game theory, and as such it uses random graphs to provide economic insights.

5.1 Single-Type Diffusion Games

We follow the conventions and notation of Sadler [50] throughout this section. There

are quite a few definitions required to set up Sadler’s model, though some of them

will be familiar from our work in Chapter 4.

A diffusion game is a sequence of n-player games {Γ(n)}n∈N, where for each n ∈ N,

the game Γ(n) = (d(n), S, V, u) is the four-tuple made up of the following compo-

nents.

1. The vector d(n) = (d
(n)
1 , . . . , d

(n)
n ) is the degree sequence for the game.

2. The set S = {0, 1} describes the possible actions an player can take. If player i

chooses the action si ∈ S such that si = 1, we say that player i is an adopter.

3. Player’s private “values” for adoption are drawn from the probability distri-

bution V on [0, 1]. Note that in this chapter, V will denote a probability

distribution, not the vertex set [n].

4. The payoff to an individual from adoption is determined by the utility function

u(v, d, a) : [0, 1]×N2 → R. The utility function depends on the private value,

the degree of the individual, and the number of neighbours who adopt the

product.

The idea that an individual’s payoff from adoption depends on how many of their

friends have adopted is one of the main features of externalities in binary decision

problems which Watts [56] sought to address. Note that the utility function is

the same for all individuals, but the exact payoff will vary depending on v, d and a.
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Following Sadler, we assume that u is strictly increasing in v, and weakly increasing

in a.

We note here that we will be working in the microcanonical ensemble in this chap-

ter, so each degree sequence d(n) is fixed, rather than d
(n)
1 , . . . , d

(n)
n being drawn

independently from some distribution Dn. As such, we will need to specify the

limiting properties of d(n) so that limn→∞ d(n) is well-behaved. As in Lemma 4.9,

let nk(d
(n)) be the number of vertices of degree k in d(n), and m(d(n)) the number

of edges in a graph with degree sequence d(n). (Note that because we are in the

microcanonical ensemble, nk and m are not random variables, though they were

in Lemma 4.9). Then in order for limn→∞ d(n) to be well-behaved, we assume that

there exists a distribution D with finite expectation and with p.m.f. {pk}k∈N, such

that for each k ∈ N,

lim
n→∞

nk(d
(n))

n
= pk, and (5.1)

lim
n→∞

m(d(n))

n
=

E(D)

2
. (5.2)

Note that Lemma 4.9 proves precisely that Equations (5.1) and (5.2) hold in the

canonical ensemble. We now continue to describe the timing of the game.

The game Γ(n) takes place over n + 1 time periods t = 0, 1, . . . , n. Write si(t) for

the action of player i at time t. We now describe the timing of the game. At t = 0,

every player has action si(0) = 0; that is, no player has adopted. We now introduce

a player called “nature” who will act at t = 1. This is a common technique in

the study of dynamic games of incomplete information (of which the single-type

diffusion game is one). At t = 1, nature makes three moves.

1. First, nature draws a graph G = Gd ∈ Gd uniformly at random from the set

of all (simple) graphs with degree sequence d(n). Each vertex of G represents

a player in the game. We will use the term network and graph interchangeably

when referring to G.

2. Second, nature draws a value vi ∈ [0, 1] independently from V for each player i.

3. Finally, nature chooses a “seed” (a first-adopter) uniformly at random. The

seed switches to action 1 at time t = 1.

One can think of the “seed” as the inventor of a product who wants to encourage

others to adopt their invention. Alternatively, one can think of the seed as an
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individual who manufactures a piece of gossip which they then tell to all of their

friends. Modelling infectious diseases does not really fit into this framework since

agents are strategic and the adoption decision is endogenous (that is, decided by

each player).

Let Gi denote the set of players who are neighbours of i in G. Player i acts at time

ti := 1 + min{t : there exists j ∈ Gi with sj(t) = 1}. We say that player i is exposed

at time ti, since this is the first time at which a neighbour of i has adopted. At

this point, player i makes a once-and-for-all decision as to whether or not they will

adopt. Note that it is possible for player i to never be exposed, in which case they

will have si(t) = 0 for all t. Define si = si(n) to be the final action of player i, and

define ai =
∑

j∈Gi
sj, the number of i’s neighbours who adopt. If si = 1, then player

i earns the payoff u(vi, di, ai). If s = 0, then player i earns zero (in economics, this

is called normalising the outside option).

The information structure of the game is as follows. All players know the degree

sequence d(n), and the value distribution V . Up until the point at which a player

is given the opportunity to act (if at all), they have only two pieces of private

information: their degree di, and their value vi. If player i gets exposed, then they

can infer that at least one of their neighbours has adopted, but they do not know

how many, nor which neighbour. Moreover, they do not know the time ti at which

they are exposed. This is an assumption which we discuss how one might relax

in Section 5.2.3. After player i has been exposed, they also know whether or not

they chose to adopt, that is, whether si(ti) = 1. At time ti+1, each player j ∈ Gi

will infer that at least one of their neighbours has adopted, so j will assign some

positive probability to the event that i has adopted.

We remark here that the games outlined in this section are called “single-type”

diffusion games, because Sadler [50] generalises these games to allow for multiple

“types” of players. The analysis of multi-type diffusion games is based primarily on

a generalisation of uniform branching processes which allow a finite set of possible

offspring distributions at a given step in the branching process. These are called

multi-type branching processes, and are a special case of the non-uniform branching

process which we introduced in Remark 3.7 and discussed further in Section 3.1.4.

A rigorous treatment of multi-type branching processes can be found in [3, Chapter

5].
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To “solve” a diffusion game, we need to introduce an equilibrium concept. Equilibria

are a fundamental idea in game theory. They describe a “steady state” of the game,

in which all individuals are playing in such a way that any deviation from the

equilibrium strategy could not result in an individual receiving a higher (expected)

payoff. We first introduce the notion of a strategy profile.

Definition 5.1. A strategy profile is a function σ(v, d) : [0, 1]×N→ S, which maps

value-degree pairs to adoption decisions.

If σ(vi, di) = 1, then player i switches to action 1 if given the opportunity. Sadler

calls such players potential adopters. If player i is never exposed, or if σ(vi, di) = 0,

then player i never adopts. For a player with degree d, write Ad for the (random)

number of neighbours who are potential adopters. The distribution of Ad will

depend on the strategy profile σ, and will be the same for all players with di = d.

If we fix a strategy profile σ, then since player i knows both vi and di, a belief about

the distribution of Adi is a sufficient statistic for player i to be able to maximise

their expected payoff. This is because player i’s payoff depends only on vi, di, and

ai, where the distribution of ai given di is precisely Adi . Player i forms beliefs

about the distribution Ad at time ti, that is, the moment that they are exposed.

Under Sadler’s model, player i does not know ti, and therefore cannot use ti in

the formation of their belief about the distribution of Ad. We now introduce the

equilibrium concept which will be used throughout the chapter. Write E(n)
σ for an

expectation taken in Γ(n) assuming players follow the strategy profile σ.

Definition 5.2. Let σ′ = σ′(v, d) and σ = σ(v, d) be strategy profiles. We say

that σ′ is a limit best-reply to σ, if

lim
n→∞

E(n)
σ (u(v, d, Ad)) ≥ 0 whenever σ′(v, d) = 1, and (5.3)

lim
n→∞

E(n)
σ (u(v, d, Ad)) ≤ 0 whenever σ′(v, d) = 0. (5.4)

The strategy profile σ is a limit equilibrium if σ is a limit best-reply to itself.

If Equations (5.3) and (5.4) hold for some finite n, then σ is called a Perfect Bayesian

Equilibrium (this is a standard concept in game theory, see [23] for more details).

It is an immediate result of standard fixed point theorems that a Perfect Bayesian
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Equilibrium exists in Γ(n) for all n ∈ N, and also that a limit equilibrium exists.

Proofs of these statements can be found in [50, Propositions 1 - 2]. Now that we

have defined the single-type diffusion game, we describe what kind of properties of

the game we would like to analyse.

5.2 Analysis of Single-Type Diffusion Games

We are interested in analysing how many players adopt, and how long the process

takes. In the game Γ(n), write Xn(t) for the number of adopting players at time t,

that is,

Xn(t) =
n∑
i=1

s
(n)
i (t).

Write Xn = Xn(n) for the final number of adopters. Then the long-run fraction of

players who adopt is given by the random variable

αn :=
Xn

n
=

1

n

n∑
i=1

s
(n)
i , (5.5)

and the time it takes for a fraction x of these players to adopt is given by the

random variable

τn(x) := min

{
x :

Xn(t)

Xn

≥ x

}
. (5.6)

In Section 5.2.1, we will analyse the limiting properties of αn. Sadler [50] also

analyses the limiting behaviour of τn, but since his results depend on average path

lengths, a topic which we did not cover in Chapter 4, we will focus only on αn. An

important factor in our analysis will be whether or not G has a giant component.

In Section 5.2.2, we discuss how these outcomes feed into players’ equilibrium beliefs.

5.2.1 Mapping Strategies to Outcomes

Suppose we take σ to be a fixed strategy profile. Then once a graph G has been

drawn by nature, all potential adopters are determined by the values V . In other

words, the n independent draws from V establish the potential adopter network,

that is, the subgraph H ⊆ G of all potential adopters. The location of the seed

then determines who actually adopts. The number of adopters can be at most the

size of the largest component in the potential adopter network.
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Recall that we assume {d(n)}n∈N converges to a distribution D with finite mean

(see Equations (5.1) and (5.2)). Remaining consistent with our notation in Sec-

tion 4.3.1, let D′ be the forward distribution corresponding to D. Let

G0(z) =
∞∑
k=0

pkz
k

be the generating function for D. Then by (4.9), the generating function for D′ is

given by

G1(z) =
1

〈k〉
G′0(z).

We will also need notation to describe the probability that different “types” of

players are potential adopters. Taking σ as fixed, let aσ denote the probability

that a player drawn at random is a potential adopter. Let aσ,d be the probability

that a random player of degree d is a potential adopter. Finally, let bσ denote

the probability that a randomly chosen neighbour of a randomly chosen player is a

potential adopter.

Definition 5.3. Fix a strategy profile σ.

1. The player adoption probability is aσ = EVED (σ(V,D)).

2. The degree-d adoption probability is aσ,d = EV (σ(V, d)).

3. The forward adoption probability is bσ = EVED′ (σ(V, 1 +D′)).

Here, EV indicates that the expectation is taken over the distribution of V , and

similarly for ED and ED′ .

Since adoption can only spread among the potential adopter network, the existence

of a giant component will be dependent on the distribution of degrees in the po-

tential adopter network. It is therefore important to define the degree distribution

among potential adopters.

Definition 5.4. Fix a strategy profile σ. The potential adopter degree distribution

Dσ is defined by

P(Dσ = k) =
aσ,k pk∑∞
j=0 aσ,j pj

, (5.7)

where pk = P(D = k).
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An epidemic or large cascade of information can only be possible when there is

a giant component in the network of potential adopters. In order to analyse the

existence of a giant component of potential adopters, we follow a similar idea to Sec-

tion 4.3.2. Let G0,σ(z) be the generating function for Dσ, and G1,σ be the generating

function for the forward degree distribution corresponding to Dσ. Then we have

that

G1,σ(z) =
G′0,σ(z)

G′0,σ(1)
. (5.8)

Assume that the potential adopter network is “tree-like”. Then we can approximate

this network by a branching process. Some of the following details were absent from

Sadler [50], but I provide them here using ideas from Watts [55].

What is the offspring distribution of this branching process? To answer this, con-

sider choosing at random a player i from the network. The probability that i is an

adopter of degree k is given by P(Dσ = k). Now consider randomly follow one of

i’s neighbours to another player. The probability that this neighbour is a potential

adopter is bσ. That is, with probability 1 − bσ, a randomly chosen neighbour of i

is not a potential adopter. Consider the probability that a randomly chosen player

is a potential adopter of degree k, and a randomly chosen neighbour of that player

is a potential adopter. This defines the p.m.f. for the forward “adoption” degree

distribution. By applying Theorem 2.22 to (5.8), the generating function for the

forward adoption degree distribution is given by

G2,σ(z) := G1,σ(1− bσ + bσz) =
G′0,σ(1− bσ + bσz)

G′0,σ(1)
. (5.9)

It follows that the forward extinction probability ρσ for the generating function (5.9)

is the smallest solution in [0, 1] to the equation

G′0,σ(1)ρσ = G′0,σ(1− bσ + bσρσ). (5.10)

This is equivalent to [50, Proposition 3].

The argument which we used to derive the threshold for the emergence of the giant

component in Section 4.3.3 is still valid here. It follows from (4.16) that a giant

component of potential adopters exists if and only if

G′2,σ(1) > 1. (5.11)
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By the chain rule, we have that[
d

dz
G2,σ(z)

]
z=1

= bσ
G′′0,σ(1)

G′0,σ(1)
. (5.12)

Therefore, a giant component of potential adopters exists if and only if

bσ

∞∑
k=0

k(k − 1)P(Dσ = k) >
∞∑
k=0

k P(Dσ = k), (5.13)

which, by substituting in (5.7), is equivalent to

∞∑
k=0

aσ,kk(bσ(k − 1)− 1)pk > 0. (5.14)

It is remarkable that we find an expression so similar to (4.20) given the added

complexity of the model here. One can see that the left hand side of (5.13) has been

“reweighted” by the probability that a randomly chosen neighbour is a potential

adopter. This is because we are concerned with branching processes beginning at a

randomly chosen vertex which spread only through potential adopters.

Now that we know when giant components of potential adopters will exist, we turn

to the question of when large cascades will occur. Let C denote the largest connected

component of potential adopters. Using the forward extinction probability ρσ, we

can calculate the fraction of players with a connection to C, and the fraction of

players contained in C. Following Sadler’s terminology, we denote these by ζσ and

φσ respectively.

Definition 5.5.

1. The player diffusivity is ζσ = 1−G0(1− bσ + bσρσ).

2. The potential adopter diffusivity is φσ = pσ (1−G1,σ(1− bσ + bσρσ)).

The player diffusivity ζσ is to the probability of triggering a large cascade, that is,

the probability that the randomly chosen seed is connected to the giant component

of potential adopters. The potential adopter diffusivity φσ is the fraction of vertices

in the cascade.
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Note that by definition of the extinction probability ρσ from (5.10), we have that

G1,σ(1− bσ + bσρσ) = ρσ

and hence φσ = 1 − ρσ. Define α to be the random variable on outcomes {0, φσ}
with probabilities

P(α = 0) = 1− ζσ, P(α = φσ) = ζσ. (5.15)

Then α describes the extent of diffusion in large networks. Recall αn from (5.5), the

long-run fraction of players who adopt. We now present a theorem which relates

αn to α.

Theorem 5.6 ( [50, Theorem 1]). Fix a profile σ. The fraction of players αn who

adopt converges in distribution to α.

Proof. By Equations (5.1) and (5.2), the degree of a random potential adopter

converges in distribution to Dσ, and the probability that a random neighbour is a

potential adopter converges to bσ. We know from our analysis in Section 4.3.6 that

the size of the giant component is given by the extinction probability of a branching

process on X1 ∼ Dσ and Xi ∼ D′σ for all i ≥ 2. To make this precise, one can

use a concentration result analogous to Corollary 4.15 but for the microcanonical

ensemble (see [10, Theorem 2] for a sufficient result).

Since the extinction probability of the forward adoption distribution D′σ is given by

ρσ, it follows that the extinction probability of a branching process on X1, X2, . . . ,

is

1− pσ + pσρσ = 1− φσ, (5.16)

as required. Here, 1 − pσ represents the probability that the first vertex in the

branching process is not a potential adopter. If they are a potential adopter, then

the branching process goes extinct with probability ρσ, since each subsequent step

in the exploration follows the forward adoption distribution D′σ.

Moreover, the probability that a randomly chosen seed fails to connect to the giant

component is simply 1−ζσ. In this case, no large cascade is triggered and so αn = 0.

2
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Intuitively, Theorem 5.6 says that if the initial seed touches the giant component

of potential adopters, then everyone in that component adopts. Otherwise, we

get almost no adoption. Even if the initial seed connects to some component of

potential adopters other than the giant component, this component is negligible in

size as n→∞. The average number of new potential adopters at each step is given

by νσ := bσ E(D′σ). The parameter νσ describes the rate at which adoption spreads.

Sadler [50] calls νσ the virality. We now use the idea of virality to discuss limiting

beliefs under different strategy profiles σ.

5.2.2 Limit Beliefs and Viral Inference

We argued in Section 5.1 that Ad, the random number of neighbours who are

potential adopters for a player with degree d, is a sufficient statistic for players to

maximise their expected utility. Here, we look at the limiting distribution of Ad.

Following Sadler, we say that a strategy profile σ is viral if the potential adopter

network contains a giant component, otherwise we say that σ is non-viral.

Before presenting theorems on the limiting distribution of Ad, we provide some in-

tuition as to why the distinction between viral and non-viral equilibria is important

in constructing beliefs. First, in economics we use the Latin term ex-ante, meaning

“before the event”, to refer to probabilities calculated by any individual before they

receive any private information. In a non-viral equilibria, all connected components

of potential adopters are finite and of similar size. Conditional on exposure, an indi-

vidual knows that at least one of their neighbours has adopted. If σ is viral however,

the ex-ante probability of exposure is bounded away from zero, and conditional on

a player’s exposure, w.h.p. that player is connected to the giant component. The

following theorem describes the limiting distribution of Ad for a non-viral strategy

profile σ.

Theorem 5.7 ( [50, Theorem 3]). Let σ be a non-viral strategy profile. As n→∞,

the number of adopting neighbours Ad is distributed as 1 + Bin(d− 1, bσ).

Proof. If σ is non-viral, then by Corollary 4.13, any finite neighbourhood of a vertex

is a tree. Hence in the diffusion process, a player can be exposed by at most

1 other player. This implies that exposure resolves uncertainty for exactly one

neighbour. Moreover, any one player’s adoption is independent of of whether or

not their neighbours are also potential adopters. Therefore, if a player is exposed,
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the d−1 neighbours who did not expose them are potential adopters with probability

bσ. It follows that Ad ∼ 1 + Bin(d− 1, bσ). 2

The more interesting case is when σ is viral. In this case, exposure provides in-

formation about a player’s position in the network. As n → ∞, the probability

that a random seed is in any non-giant component o(1). Therefore, conditional on

exposure in a viral equilibrium, a player is connected to the giant component with

probability 1− o(1).

Theorem 5.8 ( [50, Theorem 3]). Let σ be a viral strategy profile. As n→∞, the

number of adopting neighbours Ad satisfies

P(Ad = k) =
1− ρkσ

1− (1− bσ + bσρσ)d
P(Bin(d, bσ) = k). (5.17)

Proof. Consider a BRP beginning at a potential adopter. This process goes extinct

with probability ρσ. Since σ is viral, we have that ρσ < 1. Therefore, the proba-

bility that a randomly chosen potential adopter connects to the giant component

of potential adopters is 1 − ρσ. For a randomly chosen player i, let Si denote the

event that at least one of i’s neighbours is a potential adopter who is connected to

the giant component. The ex-ante probability that a neighbour who is a potential

adopter fails to connect to the giant component is simply ρσ, independently for each

neighbour. Therefore, since the probability that any neighbour of i is connected to

the giant component is independent of any other neighbours, the probability that

Si does not happen is (1− bσ + bσρσ)d. This is similar to the argument we made in

deriving (5.16). Hence conditional on exposure, we have

P(Ad = k | S) =
P(S | Ad = k) · P(Ad = k)

P(S)

=
(1− ρkσ)P(Ad = k)

1− (1− bσ + bσρσ)d
.

Since Ad ∼ Bin(d, bσ) ex-ante, this completes the proof. 2

Interestingly, in a viral equilibrium, players can infer less from exposure. This is

because there was already some positive probability that they were going to become

exposed. As we mentioned in the introduction to this chapter, Sadler calls this effect

viral inference.
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5.2.3 Viral inference with knowledge of time

We conclude this chapter with some original suggestions for how one might gen-

eralise Sadler’s results about viral inference, to the case where individuals have

information about the time ti at which they are exposed. This is a topic on which

Sadler makes some remarks in [50, Section 6], though no suggestions are provided

as to how one might proceed. Recall that we assumed in our description of the

single-type diffusion game that individuals only have two pieces of private infor-

mation upon exposure. Namely, an individual i knows di and vi. In a non-viral

equilibrium, knowledge of ti upon exposure will have no effect on an individual’s

belief about Ad. In a viral equilibrium, a player who is exposed early on knows that

the information has not had much time to spread, whereas a player exposed much

later is almost certain that they are connected to the giant component of potential

adopters.

Now suppose that every individual i knows the time ti at which they are exposed.

There is a very nice result by Newman [46] which derives the derives an explicit

expression for the distribution of component sizes in the configuration model. The

paper [46] uses similar methods to [47], though there are more subtleties associated

with the derivation. Consider a branching process with offspring distribution D′σ.

The expected offspring after n generations (or time periods) is

fn := 1 + E(D′σ) + E(D′σ)2 + · · ·+ E(D′σ)n−1 =
E(D′σ)n − 1

E(D′σ)− 1
, (5.18)

assuming that E(D′σ) 6= 1. Then an individual who finds out that they were exposed

at time ti infers that (roughly) fti offspring have been born so far, and therefore that

they are in a component of at least this size. Hence by using Newman’s result [46],

an exposed player can condition their belief about the distribution of Ad on the

probability that they are in a component of size at least fti . For certain models of

random graphs (for example, Gn,p) one could certainly get a closed form expression

for this. Whether or not a “clean” explicit expression is possible for random graphs

with an arbitrary degree distribution is still an open question.

I would conjecture that an explicit approximate expression which is correct in the

limit is attainable. An approximate solution to this problem could be attained by

allowing each player i to condition their belief about the distribution of Ad on the

probability that a BRP beginning at a randomly chosen vertex goes extinct given

that it has already produced ti generations. This extinction probability will be
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lower than the ex-ante extinction probability, since there may be more than one

individual producing offspring in generation ti.

If obtaining a closed form solution proves to be too difficult an exercise, we suggest

giving players only partial information about the time at which they are exposed.

One way to do this would be to introduce a time threshold t = t(n) > 1, such that

upon player i’s exposure, i knows whether ti ≥ t(n), or ti ≤ t(n). Practically, one

could think of this as each player passing on an additional piece of information in

the diffusion process: whether the object begin diffused is “new” or “old”. If for

player i, both ti ≥ t(n), and ti ≤ t(n) then we find ourselves back at the original

problem. To avoid this, we could insist that t(n) is never an integer. Even if we allow

t(n) to be an integer, we suspect that the probability that ti = t(n) will be o(1).

Introducing a time threshold would reduce the difficulty of the problem since only

two conditional probabilities would need to be calculated. Generalising Sadler’s

model [50] is certainly a useful area for future research, and we hope that our work

here points researchers towards solving one important aspect of this problem.
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Chapter 6

Concluding Remarks

In this thesis, we have explored the threshold for the emergence of the giant com-

ponent in random graphs.

In Chapter 3, we followed the pioneering work of Erdős and Rényi [18,19], proving

that p = 1
n

is a sharp threshold for the emergence of the giant component in the

binomial random graph. In Chapter 4 we extended this result to multigraphs with

an arbitrary degree sequence, finding an explicit threshold expression for emergence

of the giant component which was first derived by Molloy & Reed [42, 43]. We

provided a heuristic argument from [47], and made the argument rigorous using

techniques from [10]. Moreover, we obtained a concentration result for the canonical

ensemble. This concentration result implied that our results held also for simple

graphs with an arbitrary degree sequence, such as the binomial random graph.

Although the question of existence of the threshold for the emergence of the giant

component has been settled for random graphs with an arbitrary degree sequence,

the structure of these graphs in the critical window is far from a closed question,

and would be an interesting area for future study.

Finally, in Chapter 5, we discussed an application at the frontier of research in

models of information cascades: an economic phenomenon observed in the adoption

of new behaviours, habits, and technologies. Following a new model developed by

Sadler [50], we demonstrated how the methods introduced in Chapter 4 give insight

into when information cascades are possible. We also discussed the role of viral

inference, and highlighted some of the limitations of the model developed by Sadler

in [50].
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At the end of Chapter 5 we made some suggestions as to how one might go about

generalising Sadler’s model. This is an important area for future research, since

individual’s often have some idea of when a piece of information was first made

available. Another important extension to the model would be endogenising the

network structure. This simply means allowing players to have actions which change

the network structure, for example, allowing players to “make new friends”. Net-

work formation models are something we briefly mentioned in the introduction, but

were beyond the scope of this thesis. Sadler’s model provides a rich repository of

new research possibilities with important real world ramifications.
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