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Abstract

A growing body of empirical evidence reveals a fundamental asymmetry in the diffu-

sion of social behaviors: prosocial behaviors often exhibit strategic substitutability (“by-

stander effects”), while antisocial behaviors exhibit strategic complementarities (“licensing

effects”). Moreover, even a single behavior (e.g., protest participation) can be a comple-

ment in some settings and a substitute in others. To unify these findings, we develop a

model of strategic diffusion on networks with positive (prosocial) or negative (antisocial)

spillovers. Our results rely on a novel conception of influence, capturing the causal impact

of an individual’s adoption on others. Prosocial behaviors are complementary in sparse

networks but substitutable in dense ones, while antisocial behaviors exhibit the reverse

pattern. Our model predicts that prosocial behaviors emerge continuously, while antiso-

cial behaviors exhibit a discontinuous, sudden emergence. Effective policies can target the

network density or perceptions of the extent of spillovers to encourage prosocial behaviors

and inhibit antisocial ones.
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1 Introduction

The diffusion of social behavior—good or bad—is central to economic and social life.1 Under-

standing the forces governing its spread is therefore a first-order question for welfare and policy

design. Yet, the strategic nature of contagious behavior is context-dependent. For example, par-

ticipation in Hong Kong’s 1 July marches was found to be a strategic substitute in 2016 (Cantoni

et al., 2019), but a strategic complement in 2017-18 (Bursztyn et al., 2021). How can the same

collective action exhibit opposite strategic incentives?

This context-dependency in protest points to a more fundamental asymmetry in how prosocial

versus antisocial behaviors spread. In a laboratory experiment Tsvetkova and Macy (2014) find

that observing low prevalence of generosity raises willingness to give, but at high prevalence a

“bystander effect” emerges: additional observed generosity reduces individuals’ propensity to

contribute. By contrast, Tsvetkova and Macy (2015a) find that observing low prevalence of

antisocial behavior (taking from others) reduces willingness to harm relative to observing no

information.

We propose a model in which strategic incentives are not intrinsic, but are shaped by agents’

beliefs about the environment. Central to our analysis is the interaction between network density

and an agent’s influence—the discounted number of subsequent actions they expect their action

to cause. Network density has two countervailing effects. First, more connections provide more

potential observers of an agent’s action (a “local effect” that amplifies influence). Second, a

denser network creates more redundant paths for information to spread, reducing any single

individual’s pivotality over others’ awareness (a “global effect” that diminishes influence). The

tension between these local and global effects is the core mechanism driving our results. Our

notion of influence extends Bénabou et al. (2020), whose model captures only the local effect.

To formally analyze this, we model the strategic interaction as a game on a random graph

with an arbitrary degree distribution. This allows us to characterize a phase transition between

nonviral equilibria, where diffusion is contained to a negligible fraction of the population, and

viral equilibria, where actions may spread to a nontrivial fraction.

This local-global mechanism is consistent with the observed empirical puzzles. A key insight is

that individuals’ attitudes towards influence depend on the nature of the act. For prosocial be-

haviors, spillovers are positive, so agents are influence-seeking. In sparse (subcritical) networks,

the local effect dominates, influence is high, and actions are strategic complements. In dense

1For prosocial actions, evidence of contagion spans behaviors such as blood donations (Schröder et al., 2023),
protest participation (Myers, 2000), political donations (Traag, 2016), and generosity (Tsvetkova and Macy,
2014). Similarly, antisocial behaviors exhibiting contagion include bullying (Fei et al., 2024), riots (Myers,
2011), gun violence (Fagan et al., 2007), information sharing among competitors (Stein, 2008; Boldrin and
Levine, 2008; Pool et al., 2015), and even participation in Ponzi schemes (Rantala, 2019).
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(supercritical) networks, the global effect dominates, influence is low, individuals free-ride, and

behavior exhibits strategic substitutability—the “bystander effect.” For antisocial behaviors,

spillovers are negative, so agents are influence-averse. They are deterred by high influence in

sparse networks, but are “licensed” by the diffusion of responsibility (low influence) in dense

networks, which generates strategic complementarity.

This asymmetry matches the experimental evidence in Tsvetkova and Macy (2014, 2015b),

where participants observed behavior prevalence but not network structure. We interpret the

observation treatment as shifting beliefs about one’s pivotality (expected influence), rather than

structural density. In the prosocial setting (Tsvetkova and Macy, 2014), interaction occurred

in large groups, and observed cumulative generosity increased helping when prevalence was low

(high perceived pivotality) but reduced it when prevalence was high (a bystander effect). In

the antisocial chain design (Tsvetkova and Macy, 2015b), exposure followed short linear paths,

and observing low prevalence decreased harm relative to no information, with no evidence of

an observation-induced surge. This “unbroken windows” deterrence aligns with our model’s

non-viral prediction: influence-averse agents are discouraged from antisocial actions at high

perceived pivotality, and higher observed prevalence alone does not generate licensing along

sparse, non-viral exposure paths.

Our model also provides a new lens for empirical work outside the laboratory: observing whether

a given behavior is a strategic complement or substitute can, in turn, provide information on

agents’ collective belief about whether the effective network density (λσ) is in a subcritical or

supercritical state. While this presents an identification challenge—separating beliefs about

network density λ from the equilibrium strategy σ—it offers a clear path to using observed

strategic incentives to infer unobserved beliefs about the environment.

For example, while the Hong Kong protest experiments by Cantoni et al. (2019) and Bursztyn

et al. (2021) do not directly vary the actual network structure, they can be interpreted as

recalibrating agents’ beliefs about the network density and, consequently, the expected diffusion

of participation. In our model, strategic incentives are driven by beliefs about influence, which

is determined by the perceived network density. Under this interpretation, we can reconcile the

behavior in the Hong Kong protests with our local-global mechanism.

Cantoni et al. (2019) study the 2016 protest, an event where subjects held beliefs of high expected

participation (an average posterior belief of ≈ 143,000). They find that informing individuals

about high citywide turnout decreased their willingness to protest, that is, participation is a

strategic substitute. We interpret this as behavior in a perceived supercritical network: when

a protest is believed to be large (the network is dense), individuals perceive their own marginal

influence as low, which activates the “bystander effect” they document.

3



By contrast, Bursztyn et al. (2021) study the smaller 2017–2018 protests (described as “mod-

estly sized” at ≈ 50,000 participants). They find that incentivizing participation among peers

increased participation—a strategic complement. We interpret this as behavior in a perceived

subcritical network: when a protest is believed to be smaller (sparse), individuals perceive their

potential to influence others as high, leading to complementarity. Thus, our model provides

a unified framework that reconciles these opposite findings. The parameter that drives strate-

gic incentives (λ in our model) is the perceived density, which is determined by beliefs about

expected turnout. The documented shift in beliefs from high (143,000) to modest (50,000)

provides evidence of a change in the perceived network state—from supercritical (generating

substitutes) to subcritical (generating complements).

A key consequence of our equilibrium analysis is the stark difference in the emergence of vi-

ral prosocial versus antisocial behaviors. Our model predicts that prosocial behaviors emerge

continuously as a function of network density. In contrast, antisocial behaviors exhibit a discon-

tinuous emergence once network density crosses a critical threshold. This discontinuity is also

present in other model parameters; hence, seemingly small changes in the environment—e.g., a

small increase in the private benefit of the antisocial action—can lead to a sudden emergence

of antisocial behavior. Moreover, conditional on becoming viral, antisocial cascades propagate

more rapidly than prosocial ones.

Finally, we analyze the problem of a social planner who can choose the network’s density to

encourage prosocial outcomes and inhibit antisocial ones. We show that the optimal network

density is just below the critical threshold for the emergence of viral antisocial behavior. Our

framework also demonstrates that effective policies can target the discount factor—the decay of

externalities with social distance.

1.1 Related Literature

Closest to us is the work of Sadler (2020, 2025). Sadler (2020) develops a general class of

“diffusion games” with strategic complementarities between direct neighbors, and highlights the

role of the giant component. We instead study global (indirect) externalities: an agent’s utility

depends on the total number of adopters in the network, regardless of distance, so adoption need

not be complementary.2 Sadler (2025) introduces a seed multiplier in multi-type configuration

networks to study optimal seeding. Our notion of influence plays an analogous role at the

individual level and lets us show how complementarity and substitutability differ around the

viral threshold. Our emphasis on the asymmetry between prosocial versus antisocial diffusion

is also new to this literature.

2In Sadler (2020), adoption externalities only arise when a person also adopts. Hence, the number of adopting
neighbors when an individual does not adopt is an irrelevant strategic consideration.
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Network games and diffusion. Our framework differs from the large literature on games

on fixed networks, where links between players typically represent a direct strategic externality

(see Jackson and Zenou, 2015; Bramoullé and Kranton, 2016; Jackson et al., 2017, for reviews).

In our model, connections are for observation, while externalities are global. Many papers in

this literature study games of strategic complements, often in the form of threshold models—

where the incentive to take action 1 rises with the fraction of neighbors doing so (Granovetter,

1978; Schelling, 1978; Blume, 1993; Ellison, 1993; Morris, 2000; Brock and Durlauf, 2001; Leister

et al., 2022; Langtry et al., 2024). Unlike these papers, the presence of global externalities in

our model rules out any neighbor-threshold rule—decision turn on the expected global impact.

Strategic substitutes have been considered in the form of privately provided public goods—a

type of prosocial behavior (Bramoullé and Kranton, 2007; Allouch, 2015, 2017).3 Work allowing

both strategic complements and substitutes with continuous actions includes Ballester et al.

(2006); Bramoullé et al. (2014). These papers are similar to ours, but by working with random

graphs, we are able to leverage the regularities that emerge in the limit of a large population.

Our use of random graphs and phase transitions relates to work that applies these tools to

diffusion in economics (e.g., Watts, 2002; Campbell, 2013; Akbarpour et al., 2023; Langtry,

2023; Campbell et al., 2024; Dasaratha, 2023).4 Our binary-action environment is also connected

to threshold models on random graphs (Jackson and Yariv, 2005; López-Pintado, 2006, 2008;

Jackson and Yariv, 2007, 2011; Jackson and López-Pintado, 2013; Campbell et al., 2025; Langtry

and Thornton, 2025). Our novel definition of influence and conceptual focus on the asymmetry

between prosocial and antisocial behaviors is what separates us from this literature.

Collective action. The literature on collective action typically assumes either strategic com-

plementarity, or strategic substitutability, but not both. For example, in the context of protests

one view is that turnout lowers costs or raises the value of participation (e.g., Kuran, 1989;

Chwe, 2000; Edmond, 2013), while another is that turnout creates incentives for free-riding

(e.g., Olson, 1965; Palfrey and Rosenthal, 1984; Shadmehr and Bernhardt, 2011). Our model

endogenizes which force dominates by tying it to network density via influence, showing how the

same collective action can be a complement in sparse (subcritical) environments yet a substitute

in dense (supercritical) ones. While most collective-action models abstract from networked dif-

fusion (Chwe, 2000 is an exception), we show precisely how the network environment mediates

strategic incentives.

The remainder of the paper proceeds as follows. Section 2 presents a special case of the model.

3Elliott and Golub (2019) study public goods in observational networks with global positive externalities;
their main results are nonparametric and do not commit to substitutes or complements.

4For an overview, see Newman et al. (2001); Kleinberg (2007); Vega-Redondo (2007); Jackson (2008); Easley
and Kleinberg (2010).
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Section 3 characterizes influence. Section 4 provides the equilibrium analysis and welfare/policy

implications. Section 5 offers generalizations, and Section 6 concludes.

2 The Model

2.1 Outline

In this section, we present a model of diffusion on an Erdös-Rényi random graph. We extend

our model to graphs with an arbitrary degree distribution in Section 5.1, but the qualitative

insights of our model remain the same as in this foundational case. Let {G(n, p)}n∈N be a

sequence of Erdös-Rényi (or binomial) random graphs, where p = p(n) = λ
n
for some λ ≥ 0.

We endow {G(n, p)}n∈N with the structure of a game G(n) = (G(n, p),A, u) as follows. Each

vertex i ∈ {1, . . . , n} represents an agent, and each agent faces a binary adoption decision

ai ∈ A = {0, 1}. If player i chooses action 1, we say that i is an adopter.5

The game G(n) is played over n + 1 time periods t. Denote by ai(t) the action player i at time

t. At t = 0, every player has action ai(0) = 0. At t = 1, nature makes three moves:

1. First, nature draws a graph G = G(n, p) by including each possible edge independently

with probability p.

2. Second, nature chooses a “seed” uniformly at random and,

3. Third, the seed adopts the prosocial or antisocial behavior β ∈ {+,−}.6

For all t ≥ 2, neighbors of an adopter in the previous period are exposed and make a once and

for all decision to adopt or not. Hence, the adoption decision occurs when an agent is first

exposed to the behavior, but not again if they are exposed by a different neighbor in the future.

As such, we often write ai rather than ai(t) for the action i would take upon exposure.

2.2 Payoffs

At the end of the game, an agent i’s payoff is a function of their own action ai and the actions

a−i of the other agents in the network. The utility that agent i receives places a larger weight

on the actions of those close to i in the network. Let ℓij denote the length of the shortest path

from i to j (or +∞ if no such path exists) and let δ ∈ (0, 1) be a common decay factor.7 The

5This model along with its more general analogue are similar to that of a single-type diffusion game (Sadler,
2020). Sadler’s framework offers a convenient way to analyze the role of influence in the diffusion of behaviors.

6One can think of the seed as a non-strategic individual who exogenously wishes to engage in the behavior.
7The introduction of a discount factor is motivated by many real-world settings where spillovers decrease

with geographical distance. For instance, the negative effects of violence or the mobilizing effect of a protest
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decay factor δ captures how local-versus-global spillovers are: higher values of δ correspond to

spillovers from actions that are more far-reaching.8 While our results are robust to alternative

utility specifications (as we discuss in Appendix F.1.1), for our main analysis we specify agent

i’s utility as:

uβ(ai, a−i) =


intrinsic cost︷ ︸︸ ︷
(v − c)ai +

externality︷ ︸︸ ︷
v
∑
j ̸=i

δℓijaj, if β = +

(c− v)ai − v
∑

j ̸=i δ
ℓijaj, if β = −,

(1)

where v captures the common value to all agents from each one of them who adopts and c > v

is the private cost (benefit) to an individual from adopting a prosocial (antisocial) behavior β.

One can also interpret v as capturing a first-order approximation of the marginal increase in

“better” expected outcomes when adoption affects the realization of probabilistic events.9 An

agent’s utility can be written as a combination of an intrinsic payoff from the action and an

externality from the actions of others. We assume that the intrinsic payoff has the opposite

sign to the externality; hence, the intrinsic payoff is negative (positive) in the case of a prosocial

(antisocial) behavior.

2.3 Strategies

We make a number of simplifying assumptions about the information set available to a player

at the time when they are first exposed, and we discuss how one would relax the most crucial

of these assumptions in Appendix F.1.3. First, agents do not know their degree but believe

correctly that it is distributed according to a binomial distribution with parameter p = λ/n.

Second, they know that at least one of their neighbors has chosen to adopt but do not know

which ones. Third, they do not know exactly how much time has passed since the seed adopted

and therefore the calendar time t at which they act. These guarantee that each agent acts at

a single information set which we denote by hi (i ∈ {1, . . . , n}), all agents are symmetrically

informed at the moment each acts, and each agent i’s strategy may be characterized by a

(potentially mixed) strategy over a single action σi = P(ai = 1) ∈ [0, 1]. The strategy σi

represents the probability that agent i takes the action if they are exposed. We confine our

attention to symmetric equilibria, that is, where all players play the same strategy σ∗
i = σ∗ for

all i.

are strongest on those geographically or socially proximate. Extensive evidence confirms that these and similar
behaviors exhibit contagion, e.g. Myers (2000, 2011); Fagan et al. (2007); Keizer et al. (2008).

8A special case arises when δ = 1, which we discuss in Online Appendix B.1.
9We thank an anonymous reviewer for highlighting this interpretation.
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2.4 Influence

For any agent i (adopter or otherwise), we can consider the random number of other agents who

adopt if i were to adopt, but do not have the opportunity to adopt otherwise (i.e., the information

set where those agents have the opportunity to take an action is not reached). This is what we

refer to as an agent i’s influence: the number of agents that agent i causes to adopt by choosing

ai = 1, discounted by their distance from i. Consider the example in Figures 1 and 2, which

shows the connected component containing the seed in a potential adopter network. The seed

is colored blue, agents colored black have zero influence, and agents colored green have nonzero

influence over the agents colored red that pass through the green node on all paths back to the

seed.10 In this example, if any of the green colored nodes chose to not adopt then the red nodes

over which they have influence would become disconnected from the component containing the

seed. In total, the reduction in the number of individuals adopting would be equal to the green

node plus the red nodes that become disconnected from the seed when the green node does not

adopt. Furthermore, to illustrate how fewer network links may increase the influence of agents,

consider how influence changes after removing the links associated with a single vertex (as we

do in Figure 2). In Figure 1, the first green node to the right of the seed has influence over only

a single agent. This is because the other node adjacent to it is on an alternate path between

the green node and the seed. But once we remove the second path, we increase the influence of

this agent from 1 to 3. This is an example of what we earlier referred to as the global effect of

density: decreasing the connectivity of a graph can increase the influence of agents within that

graph. This happens precisely because removing links may disconnect loops thereby increasing

the influence of agents on those loops. This idea is formalized in Proposition 3.

Figure 1: Influence Figure 2: Removing a node

10Some of the red nodes also have nonzero influence, but for illustration we are focusing on the neighbors of
the seed.
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In expectation, the number of agents over which i has influence depends on the strategy σ which

i expects others to play, and on the structure of the network. We write E(n)
σ for an expectation

taken in G(n) assuming players follow the strategy σ, and we define Eσ = limn→∞ E(n)
σ . Similarly,

define E(n)
Dn

to be an expectation taken in G(n) over the degree distribution Dn = Bin(n, p), and

define ED as its limit, where D = Po(λ)—the Poisson distribution. We then define I(n)
λ (σ) and

Iλ(σ) (read “the expected influence under σ”) by

I(n)
λ (σ) ≡ E(n)

Dn

[
E(n)

σ [
∑
j ̸=i

δℓijaj|ai = 1, hi]− E(n)
σ [
∑
j ̸=i

δℓijaj|ai = 0, hi]

]
, and (2)

Iλ(σ) ≡ lim
n→∞

I(n)
λ (σ) = ED

[
Eσ[
∑
j ̸=i

δℓijaj|ai = 1, hi]− Eσ[
∑
j ̸=i

δℓijaj|ai = 0, hi]

]
. (3)

Suppose all players are playing strategy σ. We normalize the utility of not adopting to 0 and we

denote the expected change in utility from adopting by u
(n)
β (σ) ≡ E(n)

σ [uβ(1, a−i) − uβ(0, a−i)],

and uβ(σ) in the limit as n → ∞.11 Now, using the notation in (3) and the utility function (1),

we can write the expected difference in utility to an agent from adopting ai = 1 versus not

adopting ai = 0 at the information set where they have the opportunity to act—in particular,

when they hold imperfect information about the graph—as:

E(n)
D [u

(n)
β (σ)] =

v − c+ vI(n)
λ (σ), β = +

c− v − vI(n)
λ (σ), β = −.

(4)

Observe that our definition of (expected) influence Iλ(σ) captures the causal effect of adoption

on others’ adoption—that is, the expected influence of agent i is the (random, discounted)

number of other agents who adopt if i adopts but would not adopt otherwise.

3 Analysis

3.1 Existence of Equilibrium

A symmetric perfect Bayesian equilibrium in the game G(n) is a strategy σ∗ ∈ [0, 1] satisfying:

σ∗ = 1 =⇒ E(n)
Dn

[u
(n)
β (σ∗)] ≥ 0

σ∗ ∈ (0, 1) =⇒ E(n)
Dn

[u
(n)
β (σ∗)] = 0

σ∗ = 0 =⇒ E(n)
Dn

[u
(n)
β (σ∗)] ≤ 0,

11The expectation here is taken over a given fixed graph so that influence is well defined.
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and beliefs over nodes in the extensive form where an agent is exposed under the strategy σ∗

that are consistent with nature’s choice of a random graph with degree distribution Dn. Beliefs

are only payoff relevant for determining the expected influence of each agent and, given the

symmetry of our game, this will be identical for each agent. It will be convenient to avoid

specifying the beliefs themselves and rather specify the calculation of expected influence as a

function of σ∗ and Dn with the understanding this is through a set of beliefs formed via Bayes

rule for each agent. The calculation of influence in the finite n case is discussed in Online

Appendix B.

Proposition 1. There exists a symmetric perfect Bayesian equilibrium in the game G(n).

We now focus on symmetric equilibria in the limit as n → ∞.

Definition 1. Let σ′ and σ be strategies. We say that σ′ is a limit best-reply to σ, if

lim
n→∞

E(n)
Dn

[u
(n)
β (σ)] ≥ 0 whenever σ′ = 1,

lim
n→∞

E(n)
Dn

[u
(n)
β (σ)] = 0 whenever σ′ ∈ (0, 1), and

lim
n→∞

E(n)
Dn

[u
(n)
β (σ)] ≤ 0 whenever σ′ = 0.

The strategy σ′ is a limit equilibrium if σ′ is a limit best-reply to itself.

A limit equilibrium is an epsilon-equilibrium for any ϵ > 0 and all sufficiently large n. Further-

more, we show in Online Appendix D that generically any limit equilibrium can be found as a

limit of a sequence of symmetric perfect Bayesian equilibria as n → ∞ in the finite player game

G(n).

3.2 Potential Adopter Network

In a symmetric equilibrium, all potential adopters are determined by the realization of their

strategy σ∗. Following the realization of the graph G(n, p), one can imagine realizing n indepen-

dent Bernoulli random variables with parameter σ∗, one for every individual in the network. The

realization of these variables establishes the subgraph of G containing all “potential adopters”,

which we call the potential adopter network.12 The location of the seed determines who actually

adopts. The number of adopters is determined by the size of the component containing the

seed in the potential adopter network. Hence, central to our analysis will be the component

structure of the potential adopter network, which itself is a random graph with independent

edge probabilities σp.

12This is commonly known as the site-percolation network in random-graph theory.
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At this point, we need to introduce the notion of a giant component in a random graph. A classic

result of Erdős and Rényi (1959) is the phase transition in the size of the largest component in

G(n, λ/n) around λ = 1. The result states that as n → ∞,

1. Sub-critical region λ < 1, with high probability the largest component of G(n, λ/n) has a

size which is at most c log(n) for some constant c.

2. Super-critical region λ > 1, with high probability the largest component of G(n, λ/n)

contains a fraction cn of the vertices for some constant c. Moreover, the second largest

component has a size which is at most c log(n) for some constant c.

A component which contains a constant fraction of vertices is called a giant component. The

above result states that the binomial random graph contains a giant component (with high

probability) if and only if λ > 1. Moreover, when it exists the giant component is unique.

Similarly, the potential adopter network contains a giant component if and only if λσ > 1.

Our analysis is concerned with the limit of large networks i.e., where n → ∞. In this limit, it is

well known that the Erdös-Rényi random graph G(n, λ/n) converges locally in probability to a

Poisson branching process with mean offspring λ (Van der Hofstad, 2023b, see, e.g., Thm 2.18).13

In the case where λ < 1, the process stops with probability 1; however, in the case where λ > 1,

there is a non-zero probability the process never goes extinct. Hence when λ > 1, there are two

potential outcomes of following a randomly chosen link to one of its ends in the Erdös-Rényi

random graph and finding all subsequent connected nodes. The first outcome is that the link

leads to a component with a finite expected number of people. This occurs with probability

ρσ (called the extinction probability). The second outcome is that the link leads to an infinite

path (as n → ∞) that connects to the giant component with probability. This outcome occurs

with probability 1 − ρσ (the survival probability).14 An individual with d connections has d

independent realizations of these events (following a randomly chosen link to one of its ends). If

any one of these connections leads to the giant component, then the individual is also part of it.

Hence, the probability this person is in the giant component is 1−ρdσ. Moreover, conditional on

this event (at least one connection leads to the giant component) the distribution of extinction

events over the d− 1 remaining connections is given by Bin(d− 1, ρσ). In our potential adopter

network it is well known that the extinction probability ρσ is given by the smallest positive

solution to:

ρσ = e−λσ(1−ρσ). (5)

Finally, the expected number of people reached by following a link and conditioning on extinction

13We describe Poisson branching processes in more detail in Online Appendix A.1.
14See Van der Hofstad 2023b, Thm 2.28 and its application to Erdös-Rényi random graphs Thm 2.34. For an

arbitrary degree distribution in the configuration model see also Thm 4.9 and the discussion thereafter.
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is 1
1−λσρσ

.15.

3.3 Inference and Calculation of Influence

The total number of adopters in an equilibrium corresponds to the number of people in the same

component as the seed in the potential adopter network. The expected influence in equilibrium

corresponds to the expected discounted number of individuals that are connected-to versus

disconnected-from the seed’s component when an individual does versus does not adopt. In our

model, exposure confers information about an individual’s component, in particular, the agent

is in the same component as the seed. This is informative of an agent’s expected influence. In

the finite network case this inference is complicated and intractable. However, a consequence

of local convergence of the random graph to a branching process in large networks is that the

expected influence converges to a particularly simple form.

To compute the expected influence of an arbitrary agent i, we partition the other agents in i’s

component into those in the forward components found through each of an i’s links.16 This

construction means that agent i is essential for constructing a path between agents in different

elements of the forward component partition. In the limit of a large random graph, these

forward components (and an individual’s component) are random objects and, as discussed

earlier, characterized by a Poisson branching process.

First, consider an equilibrium in which λσ∗ < 1 (the sub-critical region). Each forward com-

ponent of an individual is finite with probability 1 and independent of each other. Hence, the

probability an individual with d friends is in the same component as the seed is in proportion

to their connectivity. Conditional on exposure, the updated probability of having d friends is

Pr(d|hi, λσ
∗ < 1) = dpd∑

dpd
where {pd}d≥0 are the prior probabilities. Furthermore, when {pd}d≥0

is Poisson then it is well known that E[d|hi, λσ
∗ < 1] = λσ∗ + 1. Upon exposure an individual

forms an expectation over the forward components found via following each one of its links ex-

cluding the link through which it was exposed. These components are independent realizations

of a Poisson branching process with mean offspring λσ∗ where the extinction probability ρσ is

equal to 1. The expected influence of this individual is equal to their discounted expected num-

ber of neighbors δE[d−1|hi, λσ
∗ < 1] = δλσ∗ times the discounted expected forward component

size given by (1 + δλσ∗ + (δλσ∗)2 + . . . ) = 1
1−δλσ∗ .

17 and hence expected influence is:

15This follows from Van der Hofstad 2023a, Thm 3.5 and Thm 3.15.
16Of course, some links may result in the same forward component in which case only a single copy is maintained

in the partition; hence, there may be fewer forward components created than an agent has links.
17Exposure is informative of the size of component found via following the exposure link but, in the sub-critical

region, these beliefs do not affect the calculation of expected influence Iλ(σ).
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Iλ(σ
∗) =

λσ∗δ

1− λσ∗δ
(6)

when λσ∗ < 1.

Second, consider an equilibrium where λσ∗ > 1 (the super-critical region). In the super-critical

region, the network of potential adopters contains a unique giant component and upon exposure

an agent believes, almost surely, that they are in the giant component.18 In this case an agent

updates their beliefs to reflect that their number of links follows the distribution of neighbors

for individuals in the giant component, which is given by Pr(d = k|hi, λσ
∗ > 1) =

pk(1−ρk
σ∗ )

1−ρσ∗
.19

Conditional on this event (at least one connection leads to the giant component) the remaining

d− 1 links are either connected to finite forward components (this occurs with probability ρσ∗)

or connected to a forward component containing everyone in the giant component other than

the people contained in i’s finite forward components (this occurs with probability 1 − ρσ∗).

We call this forward component the giant forward component. Therefore, i’s partition of the

giant component consists of the giant forward component and the number of successes of d− 1

independent realizations of Bernoulli(ρσ∗) random variables, one for each potential finite forward

component. The probability that the seed is in any one of these forward components is of

course dominated (Pr → 1) by the giant forward component and vanishing (Pr → 0) for the

finite components.20 The calculation of expected influence when the seed is in the giant forward

component is simply the expected discounted number of people in the remaining finite forward

components of the partition, this is given by δλσ∗ρσ∗
1−δλσ∗ρσ∗

− δρσ∗
1−λσ∗ρσ∗
1−δλσ∗ρσ∗

, where the first term is

nearly identical to (6) and the second term is a correction that occurs due to agents’ updating

about their expected degree given that they are in the giant component.

We summarize our calculation of influence for both cases with in following lemma.

Lemma 2. The expected influence function Iλ : [0, 1] → R is given by

Iλ(σ) =

 δλσ
1−δλσ

if λσ < 1,

δλσρσ
1−δλσρσ

− δρσ
1−λσρσ
1−δλσρσ

if λσ > 1
(7)

where ρσ is as in (5). In particular, Iλ is continuous.21

18The giant component contains a positive fraction of the population as n → ∞ whereas the expected size of
all other components → 0. Hence, the probability of being in the same component as the seed is vanishing in
the limit n → ∞ for all components other than the giant component.

19This is termed “viral” inference in Sadler (2020).
20To be precise, we show in the proof of Lemma 11 (found in Appendix 7.10 of the paper) that the event

where the seed is in a finite forward component contributes negligibly to influence.
21In fact, it is easily shown that Iλ is an analytic function at every point other than where λσ = 1.

13



We further characterize how influence changes with agents’ adoption probability σ and network

density λ in the following proposition.

Proposition 3. Let σ ∈ [0, 1] be any strategy.

1. If σ is nonviral, then Iλ(σ) is strictly increasing in σ and strictly increasing in λ.

2. If σ is viral, then Iλ(σ) is strictly decreasing in σ and strictly decreasing in λ.

Figure 3 captures the main idea behind Proposition 3, which is a key comparative static result

for our analysis.

Figure 3: Expected influence is increasing when the network is sparse (λσ < 1) and decreasing
when the network is dense (λσ > 1).

We see that in the sub-critical region influence reaches its maximum of δ/(1 − δ) at the point

where the giant component emerges (λσ = 1). Beyond this point it is decreasing as the giant

component grows. This illustrates one of the consequences of Proposition 3, and a key contri-

bution of our model: that adoption is a strategic complement when the graph is sparse, and a

strategic substitute when it is dense.

This non-monotonic relationship between influence and density, illustrated in Figure 3, is the key

to our paper’s central empirical applications. As we discussed in the Introduction, this mecha-

nism resolves the apparent paradox between Cantoni et al. (2019) and Bursztyn et al. (2021).

Their conflicting findings (complements vs. substitutes) align with our model’s prediction of a

strategic flip when perceived network density—proxied by beliefs about turnout—crosses from

a subcritical to a supercritical state.22

22Another interpretation, also consistent with our framework, is that the underlying network parameter λ
was fixed, but agents’ beliefs about the equilibrium strategy σ changed. In 2016, agents may have expected
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Finally, we note that Bursztyn et al. (2021) offer a related interpretation for these differing

results. They posit that strategic incentives depend on the type of tie: observing local peers

(friends) triggers social utility and coordination effects, generating complements, whereas ob-

serving global population turnout (weak ties) triggers beliefs about public good provision or

government crackdowns, leading to substitutes. Our model provides a theoretical mechanism

that endogenizes this distinction. When perceived turnout is low, diffusion is contained and

individual influence is high. In this state, the “local” social utility and coordination effects

described by Bursztyn et al. (2021) are strategically pivotal, consistent with complementarity.

Conversely, when perceived turnout is high (as in Cantoni et al. (2019)), influence is negligible

and responsibility is diffused globally. In this state, the “global” public good aspect of the

action dominates, and our model correctly predicts the emergence of strategic substitutability.

Our framework thus provides a microfoundation for why the strategic focus shifts from local to

global as beliefs about the scale of diffusion change.

4 Results

We analyze the behavior of expected influence as a function of the network density and proceed

to fully characterize symmetric equilibria for prosocial and antisocial behaviors. Furthermore, we

will be interested in the structure of the potential adopter network induced by an equilibrium

strategy. We call a strategy viral if it induces a giant component in the potential adopter

network, and nonviral otherwise. For expositional simplicity, we will focus throughout on the

case where δ is sufficiently large, in particular, δ > 1− v
c
.23 In our setting, there are four types

of symmetric equilibria:

1. No-adoption (σ∗ = 0)

2. Viral or Nonviral full-adoption (σ∗ = 1)24

3. Nonviral mixed (σ∗ ∈ (0, 1), λσ∗ < 1)

4. Viral mixed (σ∗ ∈ (0, 1), λσ∗ > 1)

All four types of equilibria can arise depending on the structure of the underlying graph (as

coordination on a high-participation (supercritical, λσ > 1) equilibrium, while in 2017-18, they expected a
low-participation (subcritical, λσ < 1) equilibrium. Both interpretations rely on our central mechanism: the
strategic flip occurs when the effective density λσ crosses the critical threshold. We find the interpretation in
the main text, which maps beliefs about turnout directly to the environmental parameter λ, to be the more
parsimonious one.

23When δ < 1 − v
c , the utility from taking the action is always negative (positive) for prosocial (antisocial)

behaviors and so the analysis is trivial— there is a unique equilibrium.
24When σ = 1, the potential adopter network is all of G(n, p). Hence the full-adoption equilibrium is viral if

and only if λ > 1.
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determined by λ). Clearly there can not be a viral equilibrium when the underlying graph does

not contain a giant component (λ < 1). We will show that there exists a critical value of λcrit
β

that separates regions where viral equilibria exist (λ > λcrit
β ) from those where they do not

(λ < λcrit
β ). There is a stark contrast between the transition from nonviral to viral equilibria

around this threshold for prosocial behaviors when compared to antisocial ones. To this end,

define C1,β(λ) as the fraction of agents (in the limit as n → ∞) in the largest component of

the potential adopter network, in the largest equilibrium of the game with prosocial behaviors

(β = +) or antisocial behaviors (β = −). We will be interested in whether the fraction of agents

who adopt in the largest equilibrium goes to zero or a limit bounded away from zero as the

density approaches the critical density from above i.e. limλ↓λcrit
β

C1,β(λ).

Our focus on the largest equilibrium σ reflects the fact that nonviral equilibria are economically

insignificant. In the case of prosocial behaviors, there turns out to be a unique viral equilibrium

(whenever one exists). For antisocial behaviors, there are multiple viral equilibria, but only the

largest is stable. To be precise, the largest equilibrium is always a generically an asymptotically

stable point of the mean dynamic for the best response(see, e.g., Sandholm, 2010, Section 4.2.1).

For example, under prosocial behaviors, for any ϵ > 0 if σ = σ + ϵ then BR(σ) < σ, and if

σ = σ − ϵ then BR(σ) > σ. The same best response property holds for the largest equilibrium

in antisocial behaviors, but not for the second largest (viral-mixed) equilibrium.

4.1 Prosocial Behaviors

To begin, we focus on the case of prosocial behaviors (β = +). When other players play according

to σ, expected utility from adoption is given by ED[u+(σ)] = (v − c) + vIλ(σ). Hence, the best

response correspondence BR+ takes a particular simple form that depends on a threshold level

of influence:

BR+(σ) =


1, Iλ(σ) >

c
v
− 1

[0, 1], Iλ(σ) =
c
v
− 1

0, Iλ(σ) <
c
v
− 1.

(8)

We characterize the structure of equilibria as a function of λ. We label each case in the propo-

sition below with the “type” of the largest equilibrium—no-adoption, full-adoption, nonviral

mixed, or viral mixed. It is helpful to first define two thresholds, λ ∈ (0, 1) and λ ∈ (1,∞) by

λ =
c− v

δc
, λδρ1 =

c− v(1− δρ1)

c+ vρ1
. (9)

These threshold mark critical levels of network density (λ): λ is the minimum density required

for equilibria beyond zero adoption to emerge (i.e., where influence can potentially cross the
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best-response threshold), and λ is the maximum density for the full-adoption equilibrium to

exist in the viral regime (λ > 1), beyond which only partial/mixed adoption is sustained at high

densities due to the global effect of density on influence.

Proposition 4 (Characterization of equilibria for prosocial behaviors). For prosocial behaviors,

the equilibrium structure depends on network density λ as follows:

1. (No-adoption) If λ < λ, the unique equilibrium is σ = 0.

2. (Nonviral full-adoption) If λ ≤ λ < 1, there is a no-adoption equilibrium σ = 0, a nonviral

mixed equilibrium λσ = λ, and a nonviral full-adoption equilibrium σ = 1.

3. (Viral full-adoption) If 1 < λ ≤ λ, there is a no-adoption equilibrium σ = 0, a nonviral

mixed equilibrium defined by λσ = λ and a viral full-adoption equilibrium σ = 1.

4. (Viral mixed) If λ > λ, there is a no-adoption equilibrium σ = 0, a nonviral mixed

equilibrium λσ = λ and a viral mixed equilibrium defined by λσ = λ.

The proposition can be understood by the relationship between (1) expected influence, (2) the

threshold c
v
− 1 in the best response and (3) the strategic complementarity/substitutability of

adoption in the sub/super critical regions. In sparse networks (λ < λ) or at low adoption levels

(σ < λ/λ), expected influence is below the best-response threshold c
v
− 1, making zero adoption

the best response. This guarantees that a no-adoption equilibrium exists for any λ, and this

equilibrium is unique in sufficiently sparse networks (Part 1 of Proposition 4). In the sub-critical

region (λ < 1), adoption is a strategic complement. As density λ increases, so does expected

influence. For sufficiently high λ (λ > λ), expected influence crosses the c
v
−1 threshold, enabling

both the full-adoption and a nonviral mixed equilibrium alongside the no-adoption equilibrium

(Part 2). Increasing density beyond λ = 1 enters the super-critical region. The three equilibria

from Part 2 persist, but the full-adoption equilibrium becomes viral due to the emergence of

a giant component in the network (Part 3). However, in the super-critical region, expected

influence decreases with both adoption and density (as per Proposition 3). For sufficiently high

λ (λ > λ), influence at full-adoption falls below the c
v
− 1 threshold, making full-adoption no

longer a best response. Instead, the highest equilibrium becomes a viral mixed strategy, where

the mixing level σ adjusts such that the resulting expected influence precisely matches the c
v
−1

threshold, sustaining the viral mix as a best response (Part 4).

A consequence of this equilibrium structure is that one of two forces will always limit the diffu-

sion of a prosocial behavior. First, full adoption is only a viral equilibrium if the network is not

too dense (λ < λ); hence, even if everyone is prepared to adopt, viral diffusion is structurally lim-

ited by the size of the giant component. Second, in sufficiently dense networks (λ > λ), diffusion
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is limited by strategic considerations. The abundance of alternative paths reduces individual

influence, creating a strong incentive to free-ride. This dynamic mirrors the “bystander effect”

described by Tsvetkova and Macy (2014) and the strategic substitutability in Cantoni et al.

(2019): when generosity appears common, the perceived marginal benefit of one’s own action

diminishes. Crucially, our model captures this mechanism without strictly requiring agents to

know the network topology—they need only infer lower pivotality from higher observed preva-

lence. It is for this reason that our model serves as a natural framework for interpreting these

empirical findings: it formally maps beliefs about others’ behavior to the underlying network

density, thereby rationalizing the shift in strategic incentives. Consequently, full adoption is

no longer a best response in these dense regimes, limiting the connectedness of the potential

adopter network.

We depict the relationship between influence and the best response in Figure 4. For exposition,

we fix c
v
= 2 and δ = .8 in the figure. The top part of the figure shows expected influence in red

and the threshold c
v
− 1 in blue, around which the best response changes. The bottom part of

the figure shows the best response correspondence in red, and the 45-degree line in black—the

intersections of the red and black lines are equilibria. We fix λ = 2.5 so that the figure shows the

entire range of possibilities for influence as a function of σ, the vertical orange line is the critical

threshold where λσ = 1, i.e. σ = 0.4. The maximum value of expected influence is δ/(1−δ) = 4

which occurs at this critical threshold. We also have λ = 0.625, and λ ≈ 1.37, and these can

be obtained by looking at the values of σ for which the expected influence (red) crosses the

threshold c
v
−1 (blue). For example, the red and blue lines first intersect at σ = 0.25, so λσ = λ

implies that λ = 2.5× 0.25 = 0.625, as claimed. Finally, because influence is small on the tails

and large in the middle, best responses are 0 for small or large σ, and 1 for intermediate values.

To conclude this section, we translate Parts 2 and 3 of Proposition 4 into a statement about the

size of diffusion. To unify our notation, we write λcrit
β , for the critical threshold around which

viral equilibria emerge (for β ∈ {+,−}). With this notation, λcrit
+ = 1, since viral equilibria

in prosocial behaviors emerge alongside the emergence of the giant component. Finally, recall

that we use C1,β(λ) to denote the fraction of agents in the largest component of the potential

adopter network for β ∈ {+,−} in the largest equilibrium. Then we have the following result.

Corollary 5 (Prosocial behaviors emerge continuously). The adoption of prosocial behaviors in

the largest equilibrium is a continuous function of the network density λ, namely

lim
λ↑λcrit

+

C1,+(λ) = 0 = lim
λ↓λcrit

+

C1,+(λ).
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Figure 4: Expected influence and the best response correspondence for prosocial behaviors.
Agents adopt only when expected influence is sufficiently large. Everyone adopts around the
critical threshold where λσ = 1. Maximal influence depends on λ, i.e. if λ < λ then expected
influence is always below the blue line λ and no one ever adopts.

To understand Corollary 5, notice that Proposition 4 and Corollary 5 implies that around the

phase transition in the underlying graph (i.e., λ ∈ (1−ϵ, 1+ϵ)), there is a parallel phase transition

in equilibrium behavior: for λ < 1, all equilibria are necessarily nonviral, while for λ > 1 there

exists an equilibrium which induces a giant component of potential adopters. Corollary 5 says

that this transition admits a continuous change in the size of the largest component in the

potential adopter network with respect to λ. We now turn to the case of the diffusion of

antisocial behaviors, and demonstrate a stark contrast.

4.2 Antisocial Behaviors

We now consider the case of antisocial behaviors (β = −). Recall that when other players play

according to σ, expected utility from adoption is given by ED[u−(σ)] = −(v− c)− vIλ(σ). The

best response correspondence again takes on a simple form characterized by a threshold level of
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influence:

BR−(σ) =


1, Iλ(σ) <

c
v
− 1

[0, 1], Iλ(σ) =
c
v
− 1

0, Iλ(σ) >
c
v
− 1.

(10)

Note that although the utility from adopting an antisocial behavior is simply the negative of

the utility from a prosocial behavior, and this “reverses” the best responses, we will see that

there are meaningful differences in the structure of equilibria between the two cases. We now

describe the structure of equilibria for antisocial behaviors, utilizing the thresholds λ and λ

defined in (9). Each case below is labeled according to the “type” of the largest equilibrium

(e.g. viral full-adoption).25

Proposition 6 (Characterization of equilibria for antisocial behaviors). For antisocial behav-

iors, the equilibrium structure depends on network density λ as follows:

1. (Nonviral full-adoption) When λ < λ, the unique equilibrium is σ = 1.

2. (Nonviral mixed) When λ ≤ λ ≤ λ, there is a unique equilibrium determined by the

nonviral mixed strategy defined by λσ = λ.

3. (Viral full-adoption) When λ > λ, there is a viral full-adoption equilibrium σ = 1 along

with a nonviral mixed equilibrium λσ = λ, and a viral mixed equilibrium λσ = λ.

Similar to the prosocial case (Proposition 4), we may understand Proposition 6 through the

relationship between (1) expected influence, (2) the threshold c
v
− 1 in the best response and

(3) the strategic substitutability/complementarity of adoption in the sub/super critical regions.

When the potential adopter network is sparse (λ < λ or low levels of adoption σ < λ/λ) then

expected influence is small (< c
v
− 1) and the best response is to adopt. Hence, full-adoption is

a unique nonviral equilibrium in sufficiently sparse networks (Part 1). In the sub-critical region

(λ < 1) adoption is a strategic substitute and as the network becomes more dense, expected

influence increases. Hence for sufficiently high levels of adoption, influence exceeds the threshold
c
v
− 1, and full-adoption is no longer sustainable as an equilibrium (non-adoption is the best

response to sufficiently high adoption). Rather, a nonviral mixed equilibrium emerges as the

unique equilibrium (Part 2). As the density increases (1 < λ < λ), the underlying network

passes into the super-critical region and expected influence remains large. This means the best

response to high levels of adoption is non-adoption, and the unique equilibrium remains the

25As with prosocial behaviors, the largest viral equilibrium is generically asymptotically stable. Moreover,
the second largest (viral mixed) equilibrium is unstable (again, with respect to the mean dynamic for the best-
response).
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nonviral mixed strategy equilibrium. Hence, unlike the case of prosocial behaviors, as the giant

component emerges in the underlying graph, no viral equilibrium emerges alongside it. In the

super-critical region, expected influence is decreasing in adoption and network density, so for

sufficiently dense networks (λ > λ̄), and sufficiently high adoption (σ > λ/λ) expected influence

falls below the threshold c
v
−1 in the best response. Once this occurs, a full-adoption equilibrium

and viral mixed equilibrium emerge (Part 3).

A key consequence of Proposition 6 is that viral equilibria emerge for antisocial behaviors

only when the network density is sufficiently large (λ > λ). The mechanism for this result

is that antisocial agents are influence-averse: they wish to avoid causing a globally negative

outcome. In sparse networks, individual influence is high, creating an accountability pressure

that deters adoption. This aligns with the “unbroken windows” effect found by Tsvetkova and

Macy (2015b), where observing low prevalence among agents positioned in a linear chains (a

nonviral structure) deterred harm. We contend this is because it observing low prevalence

increased perceived pivotality for the agents. However, in dense networks (λ > λ), the global

effect of density reduces individual influence, leading to a “diffusion of responsibility.” This

creates a licensing effect : agents perceive that the negative outcome will spread regardless of

their action, lowering the barrier to adoption.

As with Figure 4, we depict the relationship between the expected influence and the best

response correspondence for antisocial behaviors. Note that because the utility of antisocial

behaviors is the negative of the utility of prosocial behaviors, the plot is identical to Figure 4

but with the best response correspondence “inverted”. We see that viral equilibria do not emerge

smoothly alongside the phase transition in the underlying graph because when λ is close to the

critical threshold, influence becomes too large for agents to be willing to adopt.

Proposition 6 implies that there is a discontinuous jump in adoption under the largest equi-

librium when there is diffusion of an antisocial behavior. This is because a viral equilibrium

emerges only when the giant component is already well-established in the graph—that is, the

critical threshold is λcrit
− = λ > 1. In terms of component sizes, we have the following corollary

analogous to Corollary 5.

Corollary 7 (Antisocial behaviors emerge discontinuously). The adoption of antisocial behav-

iors in the largest equilibrium exhibits a jump discontinuity as a function of the network density,

namely

lim
λ↑λcrit

−

C1,−(λ) = 0 < lim
λ↓λcrit

−

C1,−(λ).

The contrast between Corollary 7 and Corollary 5 has clear consequences for the optimal net-
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Figure 5: Expected influence and the best response correspondence for antisocial behaviors.
Agents adopt only when expected influence is sufficiently small. No one adopts around the
critical threshold where λσ = 1.

work size. The next section synthesizes the findings from these corollaries, discusses welfare

implications, presents further comparative statics, and explores policy insights stemming from

our model’s results.

4.3 Welfare and Policy Implications

From a welfare perspective, optimal policies maximize the spread of prosocial behaviors and

minimize the spread of antisocial ones. To design such policies we must first characterize the

extent of diffusion in the largest equilibrium, which represents the largest fraction of potential

adopters who engage in the behavior.

A large cascade occurs if a nontrivial fraction of agents take the action in equilibrium. If there

is a viral equilibrium σ, then the size of a large cascade is given by σ(1−ρσ).
26 We plot the size

26This quantity represents the probability that a randomly chosen agent in the giant component of the potential
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Figure 6: Size of a Large Cascade: Prosocial vs. Antisocial Behaviors. There is a discontinuous
jump in maximal diffusion of antisocial behaviors at λ.

of a large cascade for prosocial and antisocial behaviors in the largest equilibrium in Figure 6,

and formalize the figure in Proposition 8.

Proposition 8 (Effect of Density on Large Cascade Size). Considering the largest equilibrium

for prosocial and antisocial behaviors, the effect of an increase in the network density (λ) on the

size of a large cascade are given in the table below (0 indicates no large cascades):

λ prosocial behaviors antisocial behaviors

λ < 1 0 0

1 < λ < λ strictly increasing 0

λ > λ strictly decreasing strictly increasing

Proposition 8 is a key comparative static result. It illustrates that the bystander effect for

prosocial behaviors and the licensing effect for antisocial behaviors strengthen as network density

(λ) increases beyond λ. The result can be understood by decomposing the impact of increased

density into two parts: a direct effect due to more potential adopters, and an indirect effect due

to agents’ adjustment of equilibrium strategies.

For prosocial behaviors, as density grows, individuals free-ride on others’ influence which reduces

the overall adoption— that is, the indirect effect dominates the direct effect. This is consistent

with empirical findings that individual charitable donations decrease as the number of other

contributors they observe increases (Tsvetkova and Macy, 2014). In contrast, for antisocial

behaviors agent’s equilibrium strategy is the same for all λ > λ, so there is no indirect effect.

Hence increased density only reinforces the “licensing effect” of the antisocial behavior, leading

adopter network takes the action (σ), multiplied by the size of the giant component in the potential adopter
network (1− ρσ).
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to increased overall adoption in the larger network. In dense networks we would therefore expect

that antisocial behaviors experience widespread diffusion while prosocial behaviors diffuse very

little. This is consistent with the empirical finding of Ferrali (2025) that dishonest behavior

diffuses while honest behavior does not.

This result also has clear implications for the speed of diffusion. In dense networks (where

λ > λ), equilibrium strategies in antisocial behaviors (σ = 1) are larger than equilibria in

prosocial behaviors (σ < 1). Hence all else equal, antisocial cascades grow more rapidly than

prosocial ones. This implication is consistent with empirical evidence accounts of “sudden

surges” in crime (Fagan et al., 2007), the emergence of riots (Myers, 2011), and even the rapid

spread of Ponzi schemes (Rantala, 2019). This implication is also consistent with the main

result of Dimant (2019): that antisocial behaviors are more contagious than prosocial ones.

Next, consider a social planner who can choose the network density (λ) ex-ante, before knowing

whether the behavior that emerges and diffuses on the network will be prosocial or antisocial.

Let the planner’s objective be to maximize welfare, which increases with the size of diffusion

of prosocial behaviors and decreases with the size of diffusion of antisocial behaviors. We will

focus on the case where the planner anticipates that the largest equilibrium will be played for

whichever behavior eventually diffuses.27 As a consequence of Proposition 8, the supremum of

welfare is attained in the limit limλ↑λ λ. However, due to the discontinuity in the size of large

cascades for antisocial behaviors at λ, there is no λ∗ that maximizes welfare, though we can of

course get arbitrarily close to the supremum.

Proposition 9 (Socially Optimal Network Density). For any arbitrarily small positive amount

(ε > 0), there is a small interval (Iε = (λ − δλ, λ)) below the viral threshold λ such that for

any network density (λ) is in this interval (Iε), the resulting social welfare is arbitrarily close to

(within ε of) the supremum of welfare over all possible network densities (λ).

The core insight of Proposition 9 is that a social planner faces a fundamental trade-off: while

greater network density can facilitate the spread of prosocial behaviors, exceeding the critical

threshold λ can lead to the abrupt emergence of antisocial behaviors. A converse implication

is that if a network is large (λ > λ), then a mob-rule can be overcome by lowering the connec-

tivity below the critical threshold λ. For example, in dense online environments contributing

to the spread of misinformation, a planner may be able to eliminate a viral “misinformation

equilibrium” by reducing the ease of information propagation across the network (e.g. through

limits on sharing content) thereby increasing individual accountability for the content shared.

Finally, Proposition 9 implies that for densities near λ, the losses from the adoption of prosocial

27The analysis is virtually identical if the planner holds a probability distribution over the equilibrium which
will be played and puts nonzero probability on the largest equilibrium.
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behaviors are small relative to the gains from adoption of antisocial behaviors, so a planner who

is uncertain about the exact threshold is better off “cutting more conservatively”.

In our model, equilibrium is sensitive to three key parameters that govern agent incentives: the

private value of acting (v), the private cost of acting (c), and the perceived reach of spillovers

(δ). The interaction of these parameters determines the critical network density threshold λ

around which viral antisocial equilibria emerge. Policies which target these parameters can

improve outcomes by increasing the “weight” of individual influence.

Events like the mass protests in Iran following the death of Mahsa Amini in 2022 or the global

“Black Lives Matter” movement sparked by the death of George Floyd in 2020 can be understood

in our model as causing sharp shifts in parameter values. For example, such catalysts can

simultaneously lower the perceived costs of participation (c), increase the moral or social value

of acting (v), and heighten public belief that collective action will generate meaningful change

that benefits everyone (δ). In our framework, such shifts can move the system from a regime

where influence is insufficient to motivate action (λ < λ) into the “high influence” regime

(λ < λ < λ) where participation is a strategic complement, by changing individuals’ beliefs

about the number of potential adopters. Importantly, if the perceived density remains below

the threshold (λ) where the bystander effect dominates, incentives to participate are strong. By

contrast, our model predicts that for antisocial behaviors, marginal shifts in these parameters

can trigger discontinuous changes in the equilibrium level of adoption. The following proposition

formalizes the impact of “nonstructural interventions” which target these parameters.

Proposition 10 (Impact of Spillover Reach (δ), Values (v) and Costs (c)). For the largest

equilibrium, a marginal increase in δ or v, or a marginal decrease in c has the following effects:

1. Prosocial Behaviors: No effect when 1 < λ ≤ λ, strictly (and continuously) increases

the size of large cascades when λ > λ.

2. Antisocial Behaviors: No effect when λ ̸= λ, and a discontinuous decrease in the size

of large cascades when λ = λ.

These findings suggest several interesting policy avenues. First, observe that Proposition 10

implies that nonstructural interventions are only effective for prosocial behaviors when there is

already a bystander effect (λ > λ), and for antisocial behaviors around the critical threshold

(λ ≈ λ). When these conditions are not met, only changes to the network structure itself will

affect equilibrium adoption. Since targeting the private value (v) or cost (c) of an action are

traditional policy levers with fairly clear implications in our model, we will focus on discussing

policies which target δ.
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For prosocial behaviors, interventions that make the perceived extent of spillover reach (δ) more

salient to agents can be effective. For example, vaccination campaigns emphasizing that com-

munity immunity makes the individual safer may encourage more individuals to participate.

Similarly, in campaigns for volunteering emphasizing that a culture of community service even-

tually creates a more supportive local network for the individual volunteer can improve the indi-

vidual’s incentive to volunteer. By making the personal benefit from widespread adoption more

apparent, these interventions raise agents’ perceptions of δ. For antisocial behaviors, Proposi-

tion 10 implies that interventions are only effective around the critical threshold. Small changes

in δ can create, or eliminate antisocial behavior. The strategic goal of policy in this case is to

make agents aware of how widespread adoption— and their role in it— ultimately harms their

own welfare.

Our analysis in this section demonstrates the rich set of policy implications that can be derived

from our model. By disentangling the role of network density (λ) from the model parameters

(δ, v, c), our model provides distinct levers for intervention. We demonstrate that optimal net-

work connectivity is “large but not too large”, and that increasing agents’ perceptions about the

extent of spillovers or weight of influence is always (weakly) beneficial, yielding discontinuous

benefits for antisocial behaviors.

5 Extensions

5.1 Arbitrary Degree Distributions

When it comes to real-world networks, there are many properties that the binomial random

graph G(n, p) does not capture, for example “fat tails”.28 As such, it is natural to ask whether

our results can be extended beyond the specialized class of Poisson networks. The object of this

section is to answer this in the affirmative.

We can easily extend our model to a game on a network with an arbitrary degree distribution

constructed using the configuration model (Bollobás, 1980; Wormald, 1978). In this setting, so

long as the degree distribution is sufficiently sparse, the graph is locally tree-like and therefore

can be approximated using branching processes (we discuss this in more detail in Online Ap-

pendix B).

An approach using generating functions works in this more general setting. Formally, define a

game with n agents as a three-tuple Γ(n) = (d(n),A, u). The vector d(n) = (d
(n)
1 , . . . ,d

(n)
n ) is the

28See e.g., Jackson (2008).
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degree sequence for the game and generalizes the binomial random graph of Section 2.29 The

actions and utility functions remain unchanged. We impose standard restrictions on the degree

sequence so that the limiting degree distribution, which we denote by D ≡ limn→∞ d(n), is well

behaved (in particular it must have a finite mean—see Online Appendix C for details).

The timing, payoffs and strategies in the more general model remain unchanged except that

expectations will be different because they depend on the degree distribution. Let

G0(z) =
∞∑
k=0

pkz
k

be the generating function for D = {pk}k≥0. Then, the generating function for D′ is given by

G1(z) =
G′

0(z)

G′
0(1)

,

where G′
0(1) = E(D). If all agents play the strategy σ, then the generating function for the

forward adoption degree distribution is G1(1 − σ + σz). It follows that the forward extinction

probability ρσ for the forward adoption degree distribution is the smallest solution in [0, 1] to

the equation

ρσ = G1(1− σ + σρσ). (11)

Note that this implies

d

dz
G1(1− σ + σz)

∣∣
z=ρσ

= σG′
1(1− σ + σρσ). (12)

Equation (12) describes the expected offspring in the subcritical dual branching process with

offspring distribution D. In the Poisson model, the critical site percolation threshold was given

by λσcrit = 1, i.e., σcrit = λ−1. In general, the critical site percolation threshold for a graph with

an arbitrary degree distribution is known to be

σcrit ≡ E[D]

E[D(D − 1)]
.

We now give an explicit formula for the expected influence function. We have the following

analogue of Lemma 2.

29This can be viewed as a special case of Sadler’s single-type diffusion game.
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Lemma 11. The expected influence function ID : [0, 1] → R is given by

ID(σ) =


δσG′

1(1)

1−δσG′
1(1)

, σ < σcrit

δρσ(Ĝ′
1(1)−1)

1−δσG′
1(1−σ+σρσ)

, σ > σcrit
(13)

where ρσ is as in (11), and

Ĝ′
1(1) ≡

∑∞
k=1 k(1− ρkσ)

σk

k!
G

(k)
0 (1− σ)

1−G0(1− σ + σρσ)

is the expected number of neighbors who are potential adopters after updating due to viral infer-

ence. In particular, ID(σ) is continuous.

It turns out to be difficult in general to determine the behavior of (13) with respect to σ, despite

there being a “discrete duality principle” (Molloy and Reed, 1998) analogous to the Poisson

case.30 However, we can provide a simple condition under which the case of an arbitrary degree

distribution is analogous to the Poisson model.

Our results on the characterization of equilibria in Section 2 relied on a continuous parameter-

ization of the underlying density of the graph (λ). The reason for this is that λ is a sufficient

statistic for σcrit and a giant component exists in the graph if and only if σcrit < 1. Many

distributions of interest can be parameterized in a similar way, for example any degree distribu-

tion that scales exponentially in the degree (e.g., a power law), or any family of mixed Poisson

distributions. As such, we now restrict our attention to one-parameter families of degree distri-

butions {Dθ}θ∈Θ, for which θ ∈ Θ ⊆ [0,∞) is a sufficient statistic for E[Dθ]
E[Dθ(Dθ−1)]

. We focus on

distributions for which E[Dθ]
E[Dθ(Dθ−1)]

is strictly decreasing in θ, with infθ∈Θ
E[Dθ]

E[Dθ(Dθ−1)]
< 1. This

guarantees that there exists a critical threshold θc such that a giant component exists in the

graph with degree distribution Dθ if and only if θ > θc. By re-normalizing θ 7→ θ/θc we my

assume without loss of generality that θc = 1.

For these degree distributions, we can offer a characterization of equilibria that is entirely

analogous to Propositions 4 and 6, if the following condition is satisfied.31

Condition 1. Let σ ∈ [0, 1] be any strategy.

(i) If σ is nonviral, then Iθ(σ) is strictly increasing in σ and strictly increasing in θ.

30We can characterize exactly what happens in the subcritical regime and around the critical threshold, but
as the graph moves further into the supercritical regime we cannot say exactly what happens to influence for an
arbitrary degree distribution. We discuss this more in Appendix F.1.

31We can weaken this condition slightly as we discuss in Online Appendix F.2.
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(ii) If σ is viral, then Iθ(σ) is strictly decreasing in σ and strictly decreasing in θ.

Condition 1 is identical to Proposition 3 but with λ replaced by the variable θ, which param-

eterizes the family of distributions. How restrictive is Condition 1? It is not difficult to show

that (i) always holds, and that (ii) holds around the phase transition (i.e., when σ ≈ σcrit).

Whether (ii) always holds away from the phase transition we do not know, however it does hold

in the examples we provide in Section 5.2.32

We write θ, θ for the solutions to
c

v
− 1 = Iθ(1),

where θ < 1 < θ.33 For any family of distributions satisfying Condition 1, we have the following

analogue of Proposition 4.

Proposition 12 (Characterization of equilibria for prosocial behaviors). Let {Dθ}θ∈Θ be a

family of degree distributions satisfying Condition 1. Then

1. (No-adoption) If θ < θ, there is a unique equilibrium σ = 0.

2. (Nonviral full-adoption) If θ < θ < 1, there is a no-adoption equilibrium σ = 0, a nonviral

mixed equilibrium σ = c−v
G′

1(1)δc
, and a nonviral full-adoption equilibrium σ = 1.

3. (Viral full-adoption) If 1 < θ < θ, there is a no-adoption equilibrium σ = 0, a nonviral

mixed equilibrium σ = c−v
G′

1(1)δc
and a viral full-adoption equilibrium σ = 1.

4. (Viral mixed) If θ > θ, there is a no-adoption equilibrium σ = 0, a nonviral mixed equi-

librium σ = 1
G′

1(1)

(
1− v

c

)
, and a viral mixed equilibrium defined by the largest solution to

Iθ(σ) =
c
v
− 1.

The characterization of equilibria for antisocial behaviors is analogous to Proposition 6 and

therefore omitted here. It is an immediate consequence of our analysis that the welfare and

policy analysis provided in Section 4.3 also apply to graphs with an arbitrary degree distribution

that satisfy Condition 1.

5.2 Examples

In this section we provide two examples of graphs with an arbitrary degree distribution— the

Zipf and exponential distributions— for which we are able to derive explicit formulas for the

32Whether there exists a general class of distributions for which the condition holds is an open question.
33It is straightforward to show that θ always exists. Whether θ exists depends on c and v. If θ does not exist

then we set it equal to +∞.
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expected influence. We show that the behavior is qualitatively identical to the Poisson case,

because both examples satisfy Condition 1. The only notable difference between the Poisson

case and the two examples we now consider is that influence under the Zipf or exponential

distribution has a fatter right-hand tail, so the upper threshold at which viral equilibria for

antisocial behaviors emerge is higher than under the Poisson distribution— this can be seen

in Figures 7 and 8.

5.2.1 Zipf Distribution

Consider a configuration model network with degree distribution

pk =
eαk

Φ(e−α, 1, k)

e−αk

k
, (14)

where Φ(z, s, k) is the Lerch transcendent function and k is the smallest degree that occurs with

nonzero probability. Equation (14) defines the so-called Zipf distribution. The Zipf distribution

exhibits a power-law of the form k−γ with γ = 1, and an exponential tail controlled by the

parameter α > 0.34 We focus on the case where k = 1 since this is analytically tractable. We

show in Online Appendix F.3.1 that expected influence can be computed explicitly using the

parameterization θ = (eα − 1)−1 and is given by

Iθ(σ) =


θσδ

1−θσδ
, θσ < 1

δ(θσ+1)(θσ−1)
θσ(θσ−δ) ln(θσ)

− δ
θσ−δ

, θσ > 1.

The parameterization θ also allows us the convenience of being able to plot expected influence

under the Zipf degree distribution and under the Poisson degree distribution on the same axes

with the same critical point. In Figure 7 we take σ = 1 and plot expected influence for the

Zipf and Poisson degree distributions. Crucially, Condition 1 holds for the Zipf distribution,

and therefore Proposition 12 provides a full characterization of the equilibrium structure as a

function of θ. The thresholds θ, θ are determined by the equations

θδ

1− θδ
=

c

v
− 1 ⇐⇒ θ =

c− v

cδ
, (15)

δ(θδ + 1)(θδ − 1)

θ(θ − δ) ln(θ)
− δ

θ − δ
=

c

v
− 1, (16)

and the second equation can be solved numerically for specific values of v, c and δ. E.g. when

c/v = 2 and δ = 0.8 we have θ = 1.67 (and θ = 0.625). In our next example the expected influ-

34The Zipf distribution arises in a number of real-world settings, including the distribution of city sizes. See
e.g., Gabaix (1999), Ioannides and Overman (2003), and Arshad et al. (2018).
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Figure 7: Zipf and Poisson Influence

ence can again be solved for analytically, and we use numerical methods to verify Condition 1.

5.2.2 Exponential Distribution

Next, we consider a configuration model network with degree distribution

pk = Ae−αk, (17)

where A = eα−1. This is the discrete exponential distribution on k ∈ {1, 2 . . . }. We parameter-

ize the distribution in terms of θ = 2(µ− 1), where µ = E[{pk}k≥0] = (1− e−α)−1. Remarkably,

we show in Online Appendix F.3.2 that the expected influence can be written in closed form as

Iθ(σ) =


δθσ

1−δθσ
, θσ < 1

16δ

θσ(θσ+6)−16δ+(2+θσ)
√

θσ(θσ+8)
, θσ > 1.

We plot the expected influence under an exponential distribution against a Poisson distribution

in Figure 8— we can see directly from the figure that the exponential distribution satisfies Con-

dition 1. And so it follows that the qualitative results of our analysis hold for an exponential

degree distribution. Moreover, since limθ→∞ Iθ(1) → 0, both thresholds θ and θ exist and

determine the equilibrium.

5.3 Robustness and Discussion

Our theoretical analysis uses sparse random graphs and therefore abstracts from several features

of real-world social networks such as clustering. Moreover, our utility specification takes a spe-

cific stance on how influence enters into agents’ preferences which may not always apply. In this
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Figure 8: Influence for the Exponential Distribution

section, we highlight the limitations of our model and discuss the implications for applications

to which our framework is a better (or worse) fit.

To begin, we use numerical simulations on finite networks to address concerns about our utility

specification and the use of sparse random graphs.

5.3.1 Fractional Influence and Finite Populations.

A central concern in applications such as protests or voting is that agents often care about the

fraction of the population participating (which determines the probability of success), rather

than the absolute number of attendees. If the influence of a single agent on the aggregate

participation rate vanishes as n → ∞, one might worry that the strategic motives we identify

become negligible in large populations.

To address this, we simulated our model on Erdős-Rényi graphs with a finite population of

n = 10,000 agents. Figure 9 reports the average influence of an agent in the largest connected

component (C1) as a function of the mean degree of the potential adopter network. For illus-

trative purposes, we take δ = 0.95.

Figure 9 demonstrates that influence remains quantitatively significant even when scaled by

population size. At the critical threshold (mean degree ≈ 1), the average influence is approxi-

mately 9. In a population of 10,000, this represents a shift of nearly 0.1% of the total population,

and a significantly larger fraction (3-4%) of the active component. The active component rep-

resents the set of agents who can observe the behavior and therefore might participate, so this

is arguably the more important metric for applications.

More generally at the critical point, the giant component exhibits a tree-like structure where the
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Figure 9: Average influence and the largest component size |C1| in finite populations. We sample
k = 200 nodes from 200 graph realizations per σ, in intervals of 0.05, fixing λ = 2.5.

average path length scales as the square root of the number of vertices in the component (Rényi

and Szekeres, 1967, Eq. 4.7). Since the influence of a node in a tree is proportional to the size

of the branch defined by that node (which scales with the path length to the root), and the

largest component at criticality scales with n2/3, the average influence is expected to scale with

(n2/3)1/2 = n1/3 (or n−1/3 as a fraction of the largest component). Hence for n = 1,000,000,

our heuristic suggests that peak influence (when δ = 1) should be around n−1/3 = 100. We

ran additional simulations in a population of one-million and found that the results conform

remarkably well with or estimate: peak influence was 99.36. This represents around n−1/3 = 1%

of the active component. In settings where the probability of success is a threshold function

of participation, a marginal shift of this magnitude by a single pivotal agent is economically

non-negligible. That being said, we acknowledge that in arbitrarily large networks, the fraction

of the population influenced by a single agent vanishes asymptotically. Consequently, the im-

portance of our key mechanism diminishes as a function of the population size, if what matters

to individuals is the fraction—rather than the number—of others they influence.

More importantly, Figure 9 confirms that the shape of the influence function in finite populations

mirrors the asymptotic prediction: it is increasing in the subcritical regime and decreasing in

the supercritical regime.35 Consequently, even if utility is driven by the fraction of participants,

the marginal incentives follow the exact non-monotonic pattern required to generate our central

results: strategic complementarity in sparse networks and strategic substitutability in dense

ones.

35We also verified that the shape of influence holds on average in small networks of n = 100.
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5.3.2 Clustering and Network Topology.

Our analytical results use branching-process approximations that assume the network to be

locally tree-like. Real-world social networks, however, often exhibit high clustering. This in-

troduces local redundancy, which could theoretically dampen the “local effect” of influence, or

accelerate the “global effect” of density.

To test the robustness of our mechanism to clustering, we simulated influence on two alternative

network topologies on n = 10,000 vertices: (1) Watts-Strogatz (WS) small-world networks

with (Watts and Strogatz, 1998), which allow us to tune clustering via a rewiring parameter β,

and (2) geometric lattices (Square and Triangular), which exhibit highly redundant paths and

a rigid spatial structure. In both cases we take δ = 0.95.36 Figure 10 displays the results.

(a) Small-World Networks (varying β) (b) Lattice Structures

Figure 10: Average influence and network topology. Panel (a) compares Watts-Strogatz small-
world networks with ring-lattice degree K = 6, varying the rewiring probabilities β. Panel (b)
compares geometric lattices. While the magnitude of peak influence varies with the structural
properties of the topology, the fundamental non-monotonic shape is robust across all specifica-
tions.

In Panel (b), we see that in highly structured Square and Triangular lattices, the peak level of

influence is dampened compared to the Erdös-Rényi graph. This is intuitive: spatial lattices

induce high local clustering, meaning a neighbor is likely connected to another neighbor, creating

redundant paths that render any single agent less pivotal.

However, Panel (a) reveals a more complex relationship in Small-World networks. As we decrease

the rewiring parameter β from 1 (Random Graph) toward 0 (Regular Ring-Lattice), the peak in-

fluence does not decay monotonically. When δ < 1, we find that the peak influence is maximized

36As with Figure 9, we sample k = 200 nodes from 200 graph realizations per σ, fixing the average degree.
In the WS graph we report total rewiring (β = 1) in place of an Erdős-Rényi graph, while for the lattices the
Erdős-Rényi graph is identical to Figure 9.
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at intermediate values of β.37 This suggests a distinct mechanism in the “small-world” regime:

when β is small but non-zero, the network retains local clusters but gains long-range shortcuts.

The agents controlling access to these shortcuts become disproportionately influential, serving

as the sole “bridges” connecting otherwise distant parts of the network. This implies that while

local clustering generally creates redundancy, the introduction of sparse shortcuts can actually

amplify the strategic importance of pivotal agents.

Crucially, the fundamental non-monotonicity is preserved across all specifications. In both the

Small-World networks and the geometric lattices, influence is strictly monotone increasing as

the network approaches the critical density, and strictly monotone decreasing beyond it. This

confirms that while topology alters the magnitude of influence, it does not alter the fundamental

structural trade-off between local connectivity and global redundancy. Therefore, the “strategic

flip” from complements to substitutes is robust to realistic network structures.

5.3.3 Limitations

We now discuss several limitations of our model.

One-shot, single-exposure decisions. We assume agents act once upon first exposure and

observe only that at least one neighbor adopted. This “simple contagion” structure fits cases

where a single observed act plausibly triggers a response (e.g., a costly prosocial gesture or

a clear norm violation). It is a poorer fit for settings in which multiple simultaneous or re-

peated peer exposures are the driver of adoption (“complex contagion”)—for instance, enter-

prise software rollouts, health behaviors that require reinforcement, or consumer technologies

where several peers adopting is pivotal. In such environments, neighbor-threshold rules are a

better description of utility and our influence-based best responses and the associated comple-

mentarity/substitutability flips may not apply without additional modeling of exposure counts

and timing.

Broadcast, directionality, and exogenous seeding. We model undirected, neighborhood

observation initiated by a single random seed. By contrast, environments with (i) broadcast or

long-tie exposure (e.g., platform featuring, influencer posts), (ii) directed attention flows (algo-

rithmic feeds/retweets), or (iii) many simultaneous seeds depart from the local, path-by-path

propagation that underpins our influence calculus. Long directed ties expose far-flung nodes

37When δ = 1, we find that the peak is strictly decreasing in β; that is, peak influence is maximized in
the regular ring lattice. This suggests influence around the threshold is driven by the diameter of the active
component. Since regular lattices exhibit large characteristic path lengths (L ∼ N) while random graphs exhibit
short ones (L ∼ lnN), removing the penalty for distance (δ = 1) allows the “elongated” structure of the lattice
to yield the highest influence. Conversely, δ < 1 penalizes long paths, which is what delivers the nonmonotonicity
in peaks present in panel (a) of Figure 10.
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at once and many seeds raise the chance that adoption touches multiple large components

irrespective of individual pivotality. In such settings, the prosocial/antisocial asymmetry we

emphasize can be diluted: broadcast can spur high adoption of prosocial actions (e.g., a charity

drive boosted across a platform) even when dense-network free-riding would otherwise make

prosocial behavior substitutable, and it can likewise ignite antisocial cascades (e.g., coordinated

brigading or doxxing) without relying on the low-influence licensing channel we model. These

cases are better captured by augmented models with layered (local+broadcast) or directed atten-

tion networks; our local-observation mechanism is most informative when exposure is primarily

neighbor-based and seeding is sparse.

Common-sign spillovers. Our baseline analysis presumes agreement among agents on the

sign of spillovers for a given behavior (prosocial “+” or antisocial “−”). In many settings the

same act can be perceived as beneficial by some and harmful by others—e.g., whistleblowing

inside a firm (prosocial for organizational integrity or the public; antisocial from the perspec-

tive of implicated colleagues), or participation in a politically motivated boycott. Such sign

heterogeneity induces interacting diffusion problems across types and can attenuate or overturn

the clean bystander/licensing asymmetry and the sharp discontinuity for antisocial behaviors.

Our results may still apply in networks among those who agree on the sign of the behavior,

but addressing these environments in full would require a multi-type extension in which agents’

payoffs depend on both their own type and the type distribution of adopters.

The limitations above do not negate the mechanism we highlight—the tension between local

observability and global redundancy—but they clarify the conditions under which our sharp

predictions are most credible and where additional modeling or empirical work may help.

6 Conclusion

We develop and analyze a model of behaviors with positive or negative spillovers that propagate

through social networks via observational learning. We show that a key strategic consideration

is influence: the causal effect of an agent’s adoption decision on the subsequent choices of the

others in the network. Our analysis reveals a non-trivial effect of greater density on behavior

which arises due to two competing effects: a direct positive effect from increased observability,

and a global negative effect as greater connectivity leads to more redundant paths. We establish

that there are some robust properties in the way connectivity is related to influence: at first,

the direct positive effect dominates and influence increases, then past a critical threshold of

connectivity the negative global effect dominates and influence decreases. Our findings unify

empirical evidence on the “bystander effect” for prosocial behaviors, and the “licensing effect”
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for antisocial behaviors. Our model also explains why a single behavior can be a strategic

complement in one setting, and a substitute in another.

We also demonstrate that there is a stark difference between the emergence of viral equilibria

for prosocial versus antisocial behaviors. Prosocial behaviors exhibit a continuous emergence

alongside the emergence of the giant component (λ = 1) in the underlying graph, while antisocial

behaviors exhibit a discontinuous emergence in which equilibrium adoption appears suddenly

at a higher critical threshold of density (λ = λ > 1). This is consistent with empirical evidence

on the rapid spread of antisocial behaviors relative to prosocial ones.

Leveraging these insights, our model yields clear and actionable policy recommendations. We

demonstrate that socially optimal networks are highly connected, but not so connected as to

permit viral antisocial equilibria. Furthermore, we highlight how non-structural interventions

can be used effectively by targeting agents’ beliefs about the reach or extent of spillovers to

raise the weight they attach to influence. We suggest that this is one way to view the effects of

catalyzing events such as those which trigger mass protests.

The robustness of our findings across different network topologies and alternative utility spec-

ifications underscores the generalizability of our insights. Our paper highlights the complex

interplay between network structure, spillovers, and strategic influence, providing a helpful

framework for understanding diffusion and improving welfare outcomes in complex systems.

Our research also opens up a rich set of empirically testable questions for future research on the

strategic diffusion of behaviors in social networks.
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7 Appendix: Proofs of the results in the main text

7.1 Proof of Proposition 1

We wish to establish the existence of a symmetric perfect Bayesian Equilibrium. We first define

a best response correspondence:

BRβ(σ) =


1.1β=+, I(n)

λ (σ) > c
v
− 1

[0, 1], I(n)
λ (σ) = c

v
− 1

1.1β=−, I(n)
λ (σ) < c

v
− 1.

(18)

Online Appendix B shows that calculating I(n)
λ (σ) via Bayes rule results in function that is a

ratio of polynomials with no roots in the denominator and is therefore continuous in σ. Hence,

σ 7→ BRβ(σ) satisfies the conditions of Kakutani’s fixed point theorem and there exists a

strategy σ∗ = BRβ(σ
∗). Our equilibrium is then this strategy and the associated beliefs that

result in I(n)
λ (σ∗). Off-equilibrium beliefs only arise at an information set in an equilibrium

where σ∗ = 0. In this case it is trivial to specify any belief where I(n)
λ (σ∗) = 0 in such an event.

7.2 Proof of Lemma 2

Lemma 2 is a special case of Lemma 11 which is proved in Appendix 7.10. For clarity, we show

explicitly here how Lemma 11 implies Lemma 2. In the case where λσ < 1, observe that for the

Poisson distribution we have G′
1(1) = λ, whence (13) gives

Iλ(σ) =
δλσ

1− δλσ
.

We now turn to the case where λσ > 1. The generating function for the Poisson distribution

has the property

G
(k)
0 (z) = λkG0(z).

Substituting this into the expression for the expected number of neighbors conditional on ex-

posure (due to viral inference), we have

∞∑
k=1

k(1− ρkσ)
σk

k!
G

(k)
0 (1− σ) = G0(1− σ)

∞∑
k=1

(
σk

(k − 1)!
− (σρσ)

k

(k − 1)!

)
λk

= G0(1− σ)
(
λσeλσ − λσρσe

λσρσ
)
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But now recall that G0(z) = eλ(z−1), so

λσG0(1− σ)
(
eλσ − ρσe

λσ
)
= λσe−λ(1−σ−1)

(
eλσ − ρσe

λσ
)

= λσ
(
1− ρσe

λσ(ρσ−1)
)

= λσ(1− ρ2σ)

where the last equality comes from the fact that ρσ = eλσ(ρσ−1). So for the Poisson distribution

we arrive at an expected number of neighbors conditional on exposure given by

E[A | S] = λσ (1− ρ2σ)

1−G0(1− σ + σρσ)
,

and finally since the denominator is equal to 1 − ρσ we get E[A | S] = λσ(1 + ρσ), so by (13)

we have

Iλ(σ) =
δρσ

1− δλσρσ
× (λσ(1 + ρσ)− 1) =

δλσρσ
1− δλσρσ

− δρσ
1− λσρσ
1− δλσρσ

which proves Lemma 2.

7.3 Proof of Proposition 3

By Lemma 2, expected influence when σ = 1 is given by

Iλ(1) =

 δλ
1−δλ

, λ < 1

δλρ1
1−δλρ1

− δρ1
1−λρ1
1−δλρ1

, λ > 1

In what follows we can always recover the same comparative static result for σ by replacing λ

with λσ (this is essentially invoking the duality result in Van der Hofstad (2023a, Theorem 3.7)),

so it is without loss of generality to focus on σ = 1. We first consider nonviral strategies (λ < 1).

In this case we have

Iλ(1) =
δλ

1− δλ
,

and
dIλ(1)

dλ
> 0 ⇐⇒ (1− δλ) + δλ > 0

which is always true. We now consider viral strategies. We will show that the result holds for

all λ > 2, and prove the case where 1 < λ ≤ 2 in E.1. Both cases rely on the derivative of

expected influence with respect to λ, which is given by

d

dλ

(
δλρ1

1− δλρ1
− δρ1

1− λρ1
1− δλρ1

)
=

δ d(λρ1)
dλ

(1− δλρ1)2
+

(1− δ)d(λρ1)
dλ

δρ1(1− δλρ1)2
− δ

dρ1
dλ

1− λρ1
1− δλρ1

, (19)
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We begin by finding an explicit formula for d(λρ1)
dλ

. By (5) and the implicit function theorem we

have

dρ1
dλ

=

(
(ρ1 − 1) + λ

dρ1
dλ

)
eλ(ρ1−1) =

ρ1(ρ1 − 1)

1− λρ1
.

So,
d(λρ1)

dλ
= ρ1 −

λρ1(1− ρ1)

1− λρ1
=

ρ1(1− λ)

1− λρ1
.

It follows that (19) can be written as

dIλ(1)

dλ
=

δρ1(1− λ)(1 + ρ1(1− δ))

(1− λδρ1)2(1− λρ1)
− δρ1(ρ1 − 1)(1− λρ1)(1− λδρ1)

(1− λδρ1)2(1− λρ1)
,

which is strictly decreasing (for λ > 1) if and only if

(1− ρ1)(1− λρ1)(1− λδρ1) < (λ− 1)(1 + ρ1(1− δ)) (20)

Now observe that (20) is true whenever λ > 2, since in this case we have the chain of inequalities

(1− ρ1)(1− λρ1)(1− λδρ1) < 1 < λ− 1 < (λ− 1)(1 + ρ1(1− δ)).

It remains to show that the inequality holds when 1 < λ < 2. We sketch the proof strategy

for this case here but leave the details to the Online Appendix E.1. To prove the claim, we

rewrite (20) in a way that gives us a simpler inequality that is sufficient to prove the claim.

We show that this simpler inequality holds when λ = 1, and then show that both sides of the

inequality are strictly increasing for all λ > 1. We conclude the proof by showing that at λ = 2,

the RHS of this inequality is still smaller than the smallest value of the LHS, so the inequality

holds everywhere.

7.4 Proof of Proposition 4

First, σ = 0 is always a best response to itself since

v − c+ vIλ(0) = v − c < 0,

so agents strictly prefer not to adopt if they expect others to do the same. Hence, no-adoption

(σ = 0) is always an equilibrium. It follows that full-adoption (σ = 1) is an equilibrium if and

only if a mixed strategy equilibrium exists. A nonviral mixed strategy equilibrium exists if and
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only if there is a σ ∈ (0, 1) satisfying

v − c+ vIλ(σ) = 0 ⇐⇒ v − c+
vδλσ

1− δλσ

⇐⇒ δλσ =
c− v

c
.

while a viral mixed strategy equilibrium exists if and only if there is a σ ∈ (0, 1) with ρσ < 1

satisfying

v − c+ vIλ(σ) = 0 ⇐⇒ v − c+
vδλσρσ

1− δλσρσ
− vδρσ

1− λσρσ
1− δλσρσ

= 0

⇐⇒ δλσρσ =
c− v(1− δρσ)

c+ vρσ
.

It follows that in the subcritical regime (when λ < 1), we have a mixed strategy equilibrium if

and only if

1 > λ >
c− v

δc
= λ.

Moreover, when λ < λ, we have λσ < 1− v
c
for all σ ∈ [0, 1] and so σ = 0 is the only equilibrium.

This proves the first two cases of Proposition 4. Next, in the supercritical regime (λ > 1), we

know from Proposition 3 that influence is strictly decreasing for any fixed σ. In particular, there

exists a smallest λ, which we call λ such that

λδρ1 =
c− v(1− δρ1)

c+ vρ1
.

For any 1 < λ < λ, there is a full-adoption equilibrium, and this is the unique viral equilibrium

(the nonviral mixed equilibrium and no-adoption equilibrium are also still present). However, for

λ > λ, full-adoption is no longer an equilibrium, since λδρ1 <
c−v(1−δρ1)

c+vρ1
, and so by Proposition 3

there is a unique viral equilibrium in mixed strategies determined by λσ = λ. This proves the

final two cases of Proposition 4.

7.5 Proof of Corollary 5

The first equality holds because the LHS is necessarily 0 for all λ < 1. The second inequality

holds because the fraction of agents in the largest component of G(n, p) can be made arbitrarily

small as λ → 1+, and in a full-adoption equilibrium (which exists as λ → 1+ by Proposition 4)

the potential adopter network is all of G(n, p).
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7.6 Proof of Proposition 6

The details of the proof are virtually identical to the proof of Proposition 4. We provide a

sketch for completeness. The key difference is that when λ is small, σ = 1 is the unique nonviral

equilibrium, since

c− v − vIλ(1) > 0.

However when λ becomes sufficiently large (exceeds λ), full-adoption is no longer an equilibrium

since agents expect to influence too many others. This leads to a mixed strategy nonviral

equilibrium and no-adoption equilibrium when λ < λ < λ. Finally, when λ > λ, the giant

component is large enough such that expected influence under full-adoption is small, and so a

viral full-adoption (and viral mixed) equilibrium emerges.

7.7 Proof of Corollary 7

The proof follows from Proposition 6 in the same way that Corollary 5 follows from Proposition 4.

As such, we omit the details.

7.8 Proofs of Propositions 8 and 9

We first note that in the subcritical regime (λ < 1), all equilibria are nonviral and so their

size is 0. Consider the diffusion of prosocial behaviors. By Proposition 4, we know that when

1 < λ < λ, the unique viral equilibrium is the full-adoption equilibrium. It follows that the

size of a large cascade in this equilibrium is simply 1 − ρ1, which is strictly increasing in λ

since extinction becomes less likely as the network gets more connected. However, once λ > λ,

full-adoption is no longer an equilibrium and the unique equilibrium is the mixed strategy

equilibrium σ∗ determined by

λσ∗δρσ∗ =
c− v(1− δρσ∗)

c+ vρσ∗
, (21)

where

ρσ∗ = eλσ
∗(1−ρσ∗ ).

Since ρσ∗ is a function of λσ∗, and the equilibrium is unique, it follows that we must have

λσ∗ = λ. In other words, in equilibrium, σ is chosen such that ρσ∗ is held constant. Hence

when λ > λ, an increase in λ keeps λσ∗ fixed, and therefore σ∗ must be strictly decreasing in λ.

Finally, since ρ∗ is constant for all λ > λ, and diffusion is determined by σ∗(1 − ρσ∗), we have

that the diffusion of prosocial behaviors is strictly decreasing in λ in the largest equilibrium, as

claimed.
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Now we consider the diffusion of antisocial behaviors. Proposition 6 tells us that when λ < λ,

there are no viral equilibria, while for λ > λ, there is a full-adoption equilibrium. Hence by the

same reasoning as in with prosocial behaviors, the size of a large cascade, 1 − ρ1, is increasing

in λ whenever λ > λ.

Proposition 9 is immediate. The diffusion of prosocial behaviors is maximized at λ = λ, while

the diffusion of antisocial behaviors is 0 if and only if λ < λ.

7.9 Proof of Propositions 10

It is convenient to prove the proposition by way of the following Lemma.

Lemma 13. In the largest equilibrium, a marginal increase (decrease) in λ has the following

effects:

1. Prosocial Behaviors: No effect when 1 < λ ≤ λ, strictly and continuously increases

(decreases) the size of large cascades when λ > λ.

2. Antisocial Behaviors: No effect when λ ̸= λ, and a discontinuous decrease in (no effect

on) the size of large cascades when λ = λ.

Proof. We begin with the case of prosocial behaviors. If 1 < λ < λ, then by Proposition 4, the

largest equilibrium is the full-adoption equilibrium, so the marginal effect of a change in λ on

the largest equilibrium is null— the full adoption equilibrium remains. On the other hand, if

λ > λ then a viral mixed equilibrium exists in which λσ = λ, and hence an increase (decrease)

in λ increases (decreases) σ in order to maintain λσ = λ, leading to a strict increase (decrease)

in the diffusion of prosocial behaviors.

Next we consider antisocial behaviors. In this case, the marginal effect of a change in λ on the

largest equilibrium is only nonzero when λ = λ, since the largest equilibrium is no adoption to

the left of λ, and full adoption to the right of λ. At the point λ = λ, an increase in λ leads to a

discontinuous decrease in the size of equilibrium. However, the marginal effect of a decrease in

λ is always null because the discontinuity is right-continuous rather than left-continuous.

Since increasing δ increases expected influence for all λ, it shifts λ upwards. Hence the case of

δ in Proposition 10 follows immediately from Lemma 13.

To prove the cases for v and c, observe that these moderate equilibrium spread through λ, so

by Lemma 13 it suffices to show that λ is strictly increasing in v and strictly decreasing in c.
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To this end, recall the definition

λδρ1 =
c− v(1− δρ1)

c+ vρ1
.

The RHS of the above equation is decreasing in v and increasing in c. In particular, since λδρ1

is decreasing when λ < λ, it follows that if the RHS increases, λ decreases. This implies that λ

is increasing in v and decreasing in c, which completes the proof.

7.10 Proof of Lemma 11

Suppose agents are playing the strategy σ. Let F1,σ(z) be the generating function for the

distribution over discounted finite “forward component sizes” in the potential adopter network

(not necessarily the whole network) from following a randomly chosen edge. Then as in Callaway

et al. (2000) we have

F1,σ(z) = δzG1[1− σ + σF1,σ(z)], (22)

from which it follows that

F1,σ(1) = δG1[1− σ + σF1,σ(1)] = δρσ.

We can find the expected finite forward component size in the potential adopter network by

taking the derivative of (22) at z = 1 and substituting in the expression for F1,σ(1). That is,

F ′
1,σ(1) = δG1[1− σ + σF1,σ(1)] + δσF ′

1,σ(1)G
′
1[1− σ + σF1,σ(1)] =

δρσ
1− δσG′

1(1− σ + σρσ)
.

(23)

Since, in the limit, the graph is locally tree-like, each neighbor of an agent can be considered as an

independent cluster of potential influence (we discuss this in more depth in Online Appendix B).

If σ is nonviral, then ρσ = 1, and exposure gives no information about the degree distribution.

Hence the total expected influence of an agent i is F ′
1,σ(1) multiplied by i’s expected discounted

number of potential-adopter neighbors: E[δAi] = δσG′
1(1). That is,

Iθ(σ) =
1

1− δσG′
1(1)

× E[Ai] =
δσG′

1(1)

1− δσG′
1(1)

.

When σ is viral, there is a giant component of potential adopters. We consider two cases. The

first is that the seed is in the giant forward component (which happens with probability → 1

in large networks). In this case, expected influence is the expected finite forward component

through each neighbor; this is simply F ′
1,σ(1) for each neighbor. The second case is that the seed

is in a finite forward component, in which case an agent is pivotal for the information reaching
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the giant component. We return to this second case at the end of the proof, for now we calculate

the expected number of neighbors conditional on exposure.

Let Si denote the event that at least one neighbor of a randomly chosen vertex i is in the giant

component of potential adopters. Let Ai denote the number of neighbors of i who are potential

adopters. Let di denote i’s degree. The quantity we need to find is E[Ai | Si], since the total

discounted expected influence is F ′
1,σ(1)× E[Ai | Si]. By the law of total expectation,

E[Ai | Si] =
∞∑

di=1

E[Ai | Si, di]P(di | Si).

By Sadler (2020, Theorem 3),

P(Ai = k | Si, di) =
1− ρkσ

1− (1− σ + σρσ)di
P(Bin(d, σ) = k).

So we have

E[Ai | Si, di] =

di∑
k=1

k

(
1− ρkσ

1− (1− σ + σρσ)di
P(Bin(di, σ) = k)

)
.

Now notice that (dropping the i subscripts for readability)

E[A | S, d]P(d | S) =

[
d∑

k=1

k

(
1− ρkσ

1− (1− σ + σρσ)d
P(Bin(d, σ) = k)

)][
pd
(
1− (1− σ + σρσ)

d
)

1−
∑

k≥0 pk(1− σ + σρσ)k
.

]

=
1

1−G0(1− σ + σρσ)

d∑
k=1

kpd
(
1− ρkσ

)
P(Bin(d, σ) = k).

By Tonelli’s theorem, the double sum
∑∞

d=1

∑n
k=1 can instead be computed as

∞∑
k=1

∞∑
d=k

kpd
(
1− ρkσ

)
P(Bin(d, σ) = k) =

∞∑
k=1

k(1− ρkσ)
∞∑
d=k

pdP(Bin(d, σ) = k)

=
∞∑
k=1

k(1− ρkσ)
σk

k!
G

(k)
0 (1− σ)

Subtracting 1 from the above expression (for the link along which exposure occurred) gives us

the numerator for expected influence under viral strategies. Hence if the seed is in the giant
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forward component then expected influence is

F ′
1,σ(1)E[Ai | Si] =

δρσ
1− δσG′

1(1− σ + σρσ)

(∑∞
k=1 k(1− ρkσ)

σk

k!
G

(k)
0 (1− σ)

1−G0(1− σ + σρσ)
− 1

)

=
δρσ(Ĝ

′
1(1)− 1)

1− δσG′
1(1− σ + σρσ)

,

where Ĝ′
1(1) ≡

∑∞
k=1 k(1−ρkσ)

σk

k!
G

(k)
0 (1−σ)

1−G0(1−σ+σρσ)
. It remains to prove that when the seed is in a finite

forward component (the “second case” mentioned earlier in the proof), the contribution to

discounted expected influence is negligible and so the above expression indeed captures the

influence in line with Lemma 11. It follows from the above analysis that the seed is in a finite

forward component with probability
F ′
1,σ(1)E[Ai|Si]

cn
, where cn is the size of the giant component.

We show that in this case the expected influence is o(n). To this effect, notice that the expected

size of influence is this case is bounded above by a branching process with expected offspring λσδ,

since this would be the expected offspring in the absence of any indirect paths. We decompose

this branching process into two parts. The first part counts all agents within log log(n) graph

distance of the root, and the second part counts all agents greater than distance log log(n) of

the root. The first part grows as:

1 + λσδ + (λσδ)2 + · · ·+ (λσδ)log logn =
(λσδ)log logn+1 − 1

λσδ − 1

= O
(
(λσδ)log logn

)
= O

(
(log n)log(λσδ)

)
= o(n).

where the second last equality follows from the fact that rlogn = elog r logn = nlog r. Next, letting

δ = e−b for some b ≥ 0, the second part (agents greater than log log n steps from the root) grows

at most as fast as

δlog logncn =
cn

(log n)b
= o(n),

where c is the fraction of agents in the potential adopter network. This bound holds because

there are at most cn agents that could possibly be influenced, but these agents must be dis-

counted by at least δlog logn under our construction— the entire forward component size is “too

far way” from any one agent to make a nontrivial difference to the calculation of expected influ-

ence. Hence the total expected influence in both the first and second cases is o(n), whence the

contribution to expected influence in the case where the seed is in a finite forward component is

F ′
1,σ(1)E[Ai | Si]

cn
× o(n) = o(1),

and therefore contributes negligibly, as claimed.
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Online Appendix

A Poisson Model

A.1 Branching Processes and Duality

There are several texts one can consult for a detailed treatment of branching processes, e.g. Van der

Hofstad (2023a); Athreya and Ney (1972). The most important results on Galton-Watson

branching processes are also outlined in Appendix A of Sadler (2020). As such, we confine our-

selves here to presenting results on the duality properties of supercritical branching processes,

and for this we follow Van der Hofstad (2023a).

Let D ≡ {pk}k≥0 be a probability distribution over the nonnegative integers, and suppose that

D is the offspring distribution of a branching process. The branching process is said to be

subcritical if E[D] < 1, and supercritical if E[D] > 1. This is because the extinction probability,

ρ i.e. the probability that the branching process eventually dies out, is 1 if E[D] < 1, and

strictly less than 1 if E[D] > 1.

Let GD(z) =
∑

k pkz
k denote the generating function for the distribution D. Then the extinction

probability ρ is defined by the smallest solution in [0, 1] to the equation ρ = GD(ρ).

Call the distributions {pk}k≥0 and {p′

k}k≥0 a conjugate pair if

p′k = ρk−1pk.

It is easy to check that {p′k}k≥0 is a probability distribution, since

∞∑
k=0

p′k = ρ−1

∞∑
k=0

pkρ
k

= ρ−1GD(ρ)

= ρ−1ρ = 1.

It turns out that the distribution for a supercritical branching process conditioned on extinction,

is precisely equal to the conjugate distribution defined above. This is stated formally in the

following theorem.

Theorem A1 (Van der Hofstad (2023a, Theorem 3.7)). Let {pk}k≥0 and {p′k}k≥0 be a conjugate

pair of offspring distributions. The branching process with distribution {pk}k≥0 conditioned on
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extinction has the same distribution as the branching process with offspring distribution {p′k}k≥0.

The proof follows directly from Bayes’ rule. Theorem A1 takes on a particularly nice form for

Poisson branching processes. Let {pk}k≥0 be a Poisson distribution with mean λ. Then the

generating function is given by

G0(z) = eλ(z−1),

and therefore the extinction probability ρ = ρλ satisfies

ρλ = eλ(ρλ−1). (A1)

If λ > 1, then a branching process with offspring distribution {pk}k≥0 is supercritical, and

therefore by Theorem A1 the distribution conditional on extinction is

p′k = ρk−1
λ pk =

ρkλ
eλ(ρλ−1)

· e
−λλk

k!
=

e−λρλ(λρλ)
k

k!
,

where the second equality follows from Eqn. (A1). But this distribution is again Poisson, with

mean

µλ ≡ λρλ < 1.

It follows that a branching process with offspring distribution Po(λ) (where λ > 1) conditioned

on extinction, has the same distribution as a branching process with offspring distribution

Po(λρλ). We call a branching process with offspring distribution Po(λρλ) the subcritical dual of

the supercritical branching process with offspring distribution Po(λ).

Once we introduce percolation, the branching process has offspring distribution Po(λσ), and so

the subcritical dual has offspring distribution Po(λσρσ), where we omit the dependence of ρ on

λ for readability. Finally, although we formally prove Lemma 2 in Appendix 7.2 of the paper,

this duality gives us another way of seeing why the influence function takes on the specific form

that it does. In particular consider the following theorem.

Theorem A2 (Van der Hofstad (2023a, Theorem 3.5)). Let T denote the total offspring of a

branching process with i.i.d. offspring X, having mean offspring µ < 1, then

E[T ] =
1

1− µ
.

It follows from Theorem A2 that the expected offspring of the subcritical dual branching process

in our setting is

E[T ] =
1

1− λσ
.
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This is remarkably close to our expression for the expected influence. The mean of the offspring

distribution in our case is λσ, but we discount each generation by δ, so the effective mean is δλσ,

leading to E[T ] = (1− δλσ)−1 for each of the δλσ neighbors an individual has (in expectation).

On the other hand, in the supercritical regime (λσ > 1) expected influence only counts agents

along paths that go extinct. When we choose an edge at random in the network and follow it

to a vertex incident with it, the vertex has, in expectation, λσρσ, “forward” potential adopting

neighbors along paths that go extinct, so the mean of the relevant offspring distribution is

δλσρσ. Hence the expected influence is just E[T ] = (1 − δλσρσ)
−1 for each neighbor. The

exact calculation for the expected number of neighbors in this case is complicated due to viral

inference (see Appendix 7.10 for more details).

The reason we can obtain this result via branching processes is that the Erdös-Rényi random

graph is intimately related to a branching process with Poisson offspring distribution. We

omit the details here, but one can show that G(n, λ/n) converges “locally in probability” to a

branching process with offspring distribution Po(λ) (see Van der Hofstad, 2023b, Theorem 2.18).

In other words, our analysis of G(n, λ/n) in terms of Poisson branching processes can be made

precise. We take this approach in the following proof, but present it in a slightly more flexible

way that also works for graphs with an arbitrary degree distribution.

B Influence

This section provides a rigorous foundation for our definition of influence in finite graphs and

its behavior in the limit as n → ∞. The following explanation can be easily adapted to a graph

with an arbitrary degree sequence, and even any distribution over values v. In our case, the

degree sequence is Poisson and the distribution over values is a point mass.

Fix a graph G = (V,E) on V = {1, 2, . . . , n} vertices with edge set E, and fix a strategy σ

which induces a subnetwork of potential adopters Ga = (Va, Ea) ⊆ G. Let s ∈ {1, 2, . . . , n} be

the seed agent, and for each vertex j define PGa(j, s) to be the set of all paths in the potential

adopter network Ga from j to s. That is,

PGa(j, s) = {v0v1, . . . , vk : k ∈ N, vivi+1 ∈ Ea for all i, and vi are distinct}.

Write Ga−{i} for the graph obtained after removing from Ga the vertex i and any edges incident

with it. Write Ga + {i} for the graph obtained by adding i ∈ V to the subgraph Ga ⊆ G. If

A3



i ∈ Va, then Ga + {i} = Ga. The influence set Inf(i) = Inf{G,Ga,s}(i) of i in G is defined by1

Inf(i) = {j ∈ V : PGa+{i}(j, s) ̸= ∅, and PGa−{i}(j, s) = ∅}.

That is, the set of all agents j ∈ Va for whom every path to s contains i, if i were in the potential

adopter network. Now, if Inf(i) ̸= ∅, then at least one of i’s neighbors is in Inf(i). To see this,

note that if every j ∈ Inf(i) is not a neighbor of i in Ga + {i}, then any path from j to s must

pass through at least one of i’s neighbors. If we let P = v0v1, . . . , vk ∈ P(j, s) with v0 = j and

vk = s, and k > 2, (by the assumption that j is not a neighbor of i) then there is some ℓ < k

with vℓ = i, and where vℓ−1 ̸= j is a neighbor of i. But if vℓ−1 /∈ Inf(i), then there exists some

other path from vℓ−1 to s not passing through i. Call this path Pℓ. Then Pvℓ−1Pℓ
2 is a path

from j to s not containing i, a contradiction of the fact that j ∈ Inf(i).

This gives us a useful way to reformulate i’s influence set. We have j ∈ Inf(i), if and only if i

separates a component of agents containing j from a component of agents containing s. This is

useful because if i’s influence set is nonempty, then as we have seen, i has at least one neighbor

over whom he has influence, and every agent over which i has influence is connected to one of

i’s neighbors. Hence for any j ∈ Inf(i), we know that j is in a component with at least one of

i’s neighbors. If follows that if i is connected to the seed, then i’s influence is the sum over the

component sizes in Ga−{i} for each of his neighbors over whom he has influence (being careful

not to double count if two of i’s neighbors are in the same component). Formally, letting CG(j)

denote the component in G containing j, and letting NG(i) denote the set of neighbors if i in

G, we have

Inf(i) =


⋃

j : s/∈CGa−{i}(j)
CGa−{i}(j)(s), s ∈ CGa+{i}(i),

∅, s /∈ CGa+{i}(i).
(B2)

In words, the influence set of i is the union over all components containing i’s neighbors who

are not on some alternate path back to the seed. Now, in our model i discounts the value of

their influence over those in their influence set by a discount factor δ < 1. So given an influence

set Inf(i) in a graph G with potential adopter network Ga and seed s, we define i’s benefit from

influence3 as the polynomial

I{G,Ga,s,i}(δ) =
∑

j∈Inf(i)

δℓij ,

where ℓij is the length of the shortest path between i and j in Ga+{i}. In our model, G and Ga

1Influence is defined for any vertex in G and not just in Ga, because agents outside the potential adopter
network still consider what their influence would be if they were to join the potential adopter network.

2This notation is standard in Diestel (2000).
3Importantly, i’s benefit from influence is not the same thing as i’s influence set. The benefit from influence

discounts agents in the influence set by their graph distance to i. We use the term “expected influence” in the
paper to mean the “expected benefit from influence”.
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are both random. This is because nature draws a graph G = G(n, p), and then Ga is determined

by a realization of the strategy σ. We can view I{G,Ga,s,i}(δ) as a random variable contingent on

the realizations of G, Ga, and s. We now show how to calculate the expectation of I{G,Ga,s,i}(δ).

Fixing a realization of the graph G, the potential adopter network is determined by n indepen-

dent Bernoulli experiments, each with success probability σ, and so the probability that any

particular potential adopter subgraph is realized is determined by a polynomial in σ. Since

agents are aware upon exposure that at least one of their neighbors has adopted, they condition

the probability of realizing any particular potential adopter network on the knowledge that at

least one of their neighbors is a potential adopter. It follows that the conditional probability is

a ratio of positive polynomials in the adoption probabilities σ. Finally, the seed agent is chosen

uniformly at random.

However, in our model, strategies are conditional upon exposure, i.e. i has the opportunity

to act only if they are in the same component as s. Agents don’t know the time period t at

which they are exposed, nor do they know which of their neighbors exposed them, as such,

upon exposure they condition on the fact that they are connected to the seed in the potential

adopter network, and on nothing else. So the quantity we are really interested in is i’s expected

benefit from influence conditional on the event Si ≡ {s ∈ CGa+{i}(i)}. Note that since Inf(i) =

∅ on the complement of Si, the expected benefit of influence Eσ[I{G,Ga,s,i}(δ)] is identical to

Eσ[I{G,Ga,s,i}(δ)1Si
]. Hence for any agent i, ex-ante the expected size of i’s influence under the

strategy σ ∈ [0, 1] and conditional on Si is

Eσ[I{G,Ga,s,i}(δ) | Si] =
Eσ[I{G,Ga,s,i}(δ)1Si

]

P(Si)

=
Eσ[I{G,Ga,s,i}(δ)]

P(Si)

=
1

P(Si)

∑
G

∑
Ga

∑
s

I{G,Ga,s,i}(δ)P(G)P(Ga | G, σ)P(s | Ga, G, σ), (B3)

where P(s | Ga, G, σ) = 1
n−1

is fixed and independent of the choice of G and s, while each

P(Ga | G, σ) is polynomial in σ, and each P(G) is a number in [0, 1] determined by the degree

distribution.

The most important consequence of this is that the expected benefit from influence upon ex-

posure is a continuous function of σ, since it is a ratio of polynomials in σ with a denominator

that has no roots in [0, 1] (except at σ = 0 which is trivial).

We now take a closer look at what happens as n → ∞. We have proved that i’s influence can

be obtained by looking at the union over the components containing i’s “forward neighbors”,
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that is, those neighbors who are not in the same forward component as the seed. We claim that

as n → ∞, in the absence of a giant component every agent i of degree d has influence over

d− 1 of his neighbors with probability 1− o(1).

To prove the above claim, we use a Lemma from from Bollobás & Riordan (2015) which es-

tablishes that the configuration model produces a locally tree-like graph. Given a graph G, let

G≤t(v) denote the subgraph of G induced by the vertices within distance t of v; that is, up to

the “t-th neighbours” of v. Let T = TD be a branching process (or a “random rooted tree”) on

X1, X2, . . . with Xi ∼ D′, the forward degree distribution (independently for all i). As with G,

let TD|t be the subtree of TD induced by the vertices within distance t of the root (that is, the

first t generations of the process).

Lemma B3 (Bollobás and Riordan (2015)). Let v be a vertex of G = G⋆
d chosen uniformly at

random. Then we may couple the random graphs G≤t(v) and TD|t so that they are isomorphic

as rooted graphs with probability 1− o(1) as n → ∞.

This gives us the following corollary.

Corollary B4. Let v be a vertex of G = G⋆
d chosen uniformly at random. If t ≥ 1 is a constant,

then w.h.p. the neighbourhood G≤t(v) of v in G is a tree.

Suppose that the graph has no giant component of potential adopters, so that all component sizes

are finite. Consider choosing a vertex i and random, and suppose i has degree d. Corollary B4

implies that if i is exposed then with probability 1−o(1), i’s removal from the potential adopter

network creates d − 1 additional components– one for each of his neighbors– by separating

them from the component containing s. This is because by assumption all of i’s neighbors

are contained in finite components, and so for any ϵ > 0 we can choose a finite size t such

that the fraction of vertices in Inf(i) which are also contained in the tree G≤t(v) (minus the

component containing i and s) is 1 − ϵ. It follows that i’s expected benefit from influence

is simply the expected discounted “forward component size” of each of his neighbors who are

potential adopters. When agents do not know their own degrees, they compute the expected

influence through each of their forward neighbors. In expectation there are σE[D′] = σλ forward

neighbors who are potential adopters. Since each neighbor is (w.h.p.) contained in a separate

forward component, i’s expected benefit from influence— i.e. total influence discounted by δ—

is δσλJλ(σ) where we define Jλ(σ) to be the discounted number of agents contained in the

component of one of i’s potential adopting neighbors, under the strategy σ. Equivalently, we

can define Jλ(σ) as the expected influence of an agent with one forward neighbor in the potential

adopter network. In the limit as n → ∞ we have an explicit expression for the component sizes
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and forward component sizes (See Callaway et al. (2000) and Newman et al. (2001)), namely

Iλ(σ) = δλσJ (σ) =
δλσ

1− δλσ
. (B4)

It remains to consider what happens when there are components of infinite size in the potential

adopter network. We would like do define influence analogously to the above– as the expected

discounted forward component size. If the seed is connected to the giant component on paths

not passing through i, then i’s influence is the discounted finite forward component size.4 This is

because all agents not on finite forward components will be exposed independently of the action

of i (a different chain of people from the giant component will reach them). Hence when the

seed is in the giant forward component, the influence of an agent i of degree d is, in expectation,

their discounted number of potential adopting neighbors multiplied by the expected discounted

forward component size through each of these neighbors, conditional on those components being

finite (i.e. the paths dying out). This turns out to be precisely the expectation of the generating

function F1,σ(z), which we define in Appendix 7.10 of the paper and we show its expectation to

be

F ′
1,σ(1) =

δρσ
1− δσG′

1,σ(1− σ + σρσ)
, (B5)

where ρσ is the forward extinction probability. When ρσ = 1, (B5) coincides with J (σ)

from (B4). However, due to viral inference the expected number of potential adopting neighbors

is different when strategies are viral. Let E[Ai | Si] be the expected degree of a randomly chosen

agent in the giant component. Let F be the event that the seed is in a finite forward component,

and let cn be the size of the giant component. Then total expected influence for large n under

viral strategies is

Iθ(σ) = F ′
1,σ(1)E[Ai | Si]

as n → ∞. As we show in Appendix 7.10 of the paper, the correct expression E[Ai | Si] is

E[Ai | Si] =
1

1−G0(1− σ + σρσ)

∞∑
k=1

k(1− ρkσ)
σk

k!
G

(k)
0 (1− σ)− 1.

This concludes our formal discussion of the notion of influence.

B.1 The case of δ = 1.

A special case arises when δ = 1. In this case, the externality is perfectly global in the sense

that agents receive utility from all others’ who adopt, independently of their position in the

4It is possible that the seed is connected to the giant component only on paths passing through i, but in this
case the contribution to expected influence is negligible, as we show at the end of Appendix 7.10 in the paper.
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network. In particular, agents care about the actions of those who are infinitely far away from

them.5 When the network is subcritical, all paths within a single component are finite and so

ℓij < ∞ for all j in the same component as i. But when the network is supercritical, the giant

component contains infinitely long paths, so there may be agents for whom ℓij = ∞ and i can

“influence” j in the sense we describe shortly. As such, it is important to distinguish between

the case where δ < 1, where agents only care about “local adoption” and δ = 1 where agents

care about global adoption.

The key change to expected influence comes when analyzing the case where the seed belongs

to one of the finite forward components. Despite the vanishing probability of this occurring,

when δ = 1 these events contribute non-negligibly to expected influence because i is essential

for connecting the seed to the giant forward component. The contribution to expected influence

of this event is given by the product of the probability of the seed being in one of the finite

forward components and the expected influence in this event. If the giant component contains

a fraction c of the vertices, then the probability that the seed is in one of the finite forward

components is
λσρσ

1−λσρσ
−ρσ

cn
(in the limit of a large network), which goes to 0, while the expected

size of influence diverges to cn. Hence, the contribution to influence is the product of these and

is equal to λσρσ
1−λσρσ

− ρσ.

Therefore, when δ = 1, the expected influence function Iλ : [0, 1] → R is given by

Iλ(σ) =

 λσ
1−λσ

if λσ < 1,

2( λσρσ
1−λσρσ

− ρσ) if λσ > 1
(B6)

where ρσ is as in (5). A similar expression can be derived in the case of a graph with an arbitrary

degree distribution.

C The Degree Distribution

In order for limn→∞ d(n) to be well-behaved, we assume—as is standard—that there exists a

distribution D with finite expectation and with p.m.f. {pk}k∈N, such that for each k ∈ N,

lim
n→∞

nk(d
(n))

n
= pk, and (C7)

lim
n→∞

m(d(n))

n
=

E(D)

2
. (C8)

5Here, we are adopting the convention that 1∞ = 1. This is essentially the same as the convention in measure
theory that +∞ · 0 = 0.
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The function nk(d
(n)) is the number of vertices of degree k in d(n), while m(d(n)) is the number

of edges in the graph with degree sequence d(n).

Under these conditions, all of our quantities of interest (the extinction probability, size of the

largest component, etc.) are analytic except at the critical threshold (see Janson, 2009, Theorem

3.11 for details). This justifies (among other things) our implicit differentiation of ρσ in the proof

of Proposition 3.

D Equilibrium

Although we analyze equilibria in the “limit-game”, our pure strategy equilibria exist in any

game with sufficiently large n, and our mixed strategy equilibria are limits of mixed equilibria in

the finite games (as n → ∞). To see this, consider the case where a prosocial behavior diffuses

on the network. Note first that for all n, we have Iλ(0) = 0, so consider the case where σ = 1

is a strict pure strategy equilibrium in the limit-game.

Since σ = 1 is a strict pure strategy equilibrium, it must be that Iλ(1) > c
v
− 1. But since

I(n)
λ (σ) converges to Iλ(σ) as n → ∞, there must be some N for which I(n)

λ (1) > c
v
− 1 for all

n ≥ N . Hence σ = 1 is an equilibrium in all sufficiently large games.

Finally, suppose σ ∈ (0, 1) is a nonviral mixed strategy equilibrium of the limit-game. Then

Iλ(σ) =
c
v
− 1. Now fix ϵ > 0. As above, for sufficiently large n we must have that I(n)

λ (σ+ ϵ) >
c
v
− 1 and I(n)

λ (σ − ϵ) < c
v
− 1 (alternatively, for viral equilibria the inequalities are reversed).

Hence by continuity of I(n)
λ (σ) (established in Appendix B), there is a mixed strategy equilibrium

in (σ − ϵ, σ + ϵ), i.e. within distance ϵ of σ. Hence we may take a sequence of mixed strategy

equilibria within ϵ of σ for each n sufficiently large. Taking ϵ → 0 implies that the equilibrium

σ can be recovered as the limit of mixed strategy equilibria in the finite games.

E Proofs: Additional Details

E.1 Remainder of Proof of Proposition 3

Recall that our aim is to show that the following inequality ((20) in the paper) holds for all

1 < λ ≤ 2:

(1− ρ1)(1− λρ1)(1− λδρ1) < (λ− 1)(1 + ρ1(1− δ)).
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To begin, it is convenient to rewrite the inequality as

(1− λρ1)(1− λδρ1)

1 + ρ1(1− δ)
<

λ− 1

1− ρ1
.

Observe that for any δ ∈ (0, 1),

λδρ21 + δρ1(λ− 1) > 0

=⇒ λδρ21 + λδρ1 − δρ1 > 0

=⇒ 1 + ρ1 − δρ1 > 1 + ρ1 − λδρ1 − λδρ21

=⇒ 1 + ρ1(1− δ) > (1− λδρ1)(1 + ρ1)

=⇒ (1 + ρ1(1− δ))(1− λρ1) > (1− λδρ1)(1 + ρ1)(1− λρ1)

=⇒ 1− λρ1
1 + ρ1

>
(1− λρ1)(1− λδρ1)

1 + ρ1(1− δ)

Hence it suffices to prove that
1− λρ1
1 + ρ1

<
λ− 1

1− ρ1

for all 1 < λ ≤ 2.

To this effect, consider the limit

L ≡ lim
λ→1+

λ− 1

1− ρ1

Since the numerator and denominator both approach 0, by L’Hôpital’s rule, we have

L = lim
λ→1+

1

−dρ1
dλ

=
1− λρ1

ρ1(1− ρ1)
.

A second application of L’Hôpital’s rule gives

L = lim
λ→1+

−ρ1 − λdρ1
dλ

dρ1
dλ

(1− 2ρ1)
=

(
lim
λ→1+

1

−dρ1
dλ

)(
lim
λ→1+

ρ1
1− 2ρ1

)
+

(
lim
λ→1+

−λ

1− 2ρ1

)
L = L(−1) + 1

=⇒ L =
1

2
.

On the other hand, we have

lim
λ→1+

λρ1 = 1 =⇒ lim
λ→1+

1− λρ1
1 + ρ1

= 0 <
1

2
= L.

This shows that (20) holds as λ → 1+. Next we show that both sides of (20) are strictly

A10



increasing. The LHS is immediate, since

d

dλ

(
1− λρ1
1 + ρ1

)
=

>0︷ ︸︸ ︷
−d(λρ1)

dλ

>0︷ ︸︸ ︷
(1 + ρ1)

>0︷ ︸︸ ︷
−dρ1

dλ

>0︷ ︸︸ ︷
(1− λρ1)

(1 + ρ1)2
> 0.

For the RHS, we have
d

dλ

(
λ− 1

1− ρ1

)
=

1− ρ1 +
dρ1
dλ

(λ− 1)

(1− ρ1)2
,

which is positive iff

1− ρ1 + (λ− 1)

(
ρ1(ρ1 − 1)

1− λρ1

)
> 0

⇐⇒ 1 >
(λ− 1)ρ1
1− λρ1

⇐⇒ ρ1 <
1

2λ− 1
.

To prove the last inequality above it suffices to show that

e
λ
(

1
2λ−1

−1
)
≤ 1

2λ− 1
, (E9)

since this would imply that the smallest solution in [0, 1] to the equation ρ1 = eλ(ρ1−1) must be

at some ρ1 <
1

2λ−1
. By using the fact that

λ

(
1

2λ− 1
− 1

)
=

2λ(1− λ)

2λ− 1
=

1

2

[
1− (2λ− 1)2

2λ− 1

]
=

1

2

[
1

2λ− 1
− (2λ− 1)

]
=

1

2(2λ− 1)
+

1

2
− λ,

so we can rewrite (E9) as

e−λ
(
e

1
2(2λ−1)

+ 1
2 (2λ− 1)− eλ

)
≤ 0.

At λ = 1 the LHS of the above inequality is equal to 0, so it suffices to prove that the function

f(λ) ≡ e
1

2(2λ−1)
+ 1

2 (2λ− 1)− eλ

is strictly increasing. To show this, first note that for λ > 1,

2(λ− 1)2 > 0 =⇒ (2λ− 1)λ− 3λ+ 2 > 0 =⇒ λ >
3λ+ 2

2λ− 1
.
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Next recall that log(1 + x) < x for all x ̸= 0, so we have

λ

2λ− 1
+ log

(
1 +

(
1− 1

2λ− 1

))
<

λ

2λ− 1
+ 1− 1

2λ− 1
=

3λ− 2

2λ− 1
< λ.

Exponentiating both sides gives

e
λ

2λ−1
4λ− 3

2λ− 1
< eλ.

Finally, some algebraic manipulation shows that

df

dλ
= eλ − e

λ
2λ−1

4λ− 3

2λ− 1
.

So we see that df
dλ

> 0 iff eλ > e
λ

2λ−1 4λ−3
2λ−1

, which we have proved! This proves (E9) which in turn

proves that ρ1 <
1

2λ−1
. Hence

d

dλ

(
λ− 1

1− ρ1

)
> 0

for all λ > 1. To summarize, we have thus far shown that

lim
λ→1+

(
λ− 1

1− ρ1

)
=

1

2
> 0 = lim

λ→1+

(
1− λρ1
1 + ρ1

)
, (E10)

d

dλ

(
λ− 1

1− ρ1

)
> 0 (E11)

d

dλ

(
1− λρ1
1 + ρ1

)
> 0. (E12)

To complete the proof, we show that 1−λρ1
1+ρ1

|λ=2<
1
2
, which shows that (20) holds when 1 < λ ≤ 2.

It suffices to prove that at λ = 2,

ρ1 ≥
1

5
,

since this would imply
1− 2ρ1
1 + ρ1

≤
1− 2

5

1 + 1
5

=
1

2
.

But for this it suffices to show that

e2(
1
5
−1) ≥ 1

5
,

since by definition of ρ1 this means ρ1 ≥ 1
5
. It is easily verified (numerically or otherwise) that

e2(
1
5
−1) ≈ 0.202 >

1

5
,

and this proves that (20) holds for 1 < λ ≤ 2, which in turn proves that

dIλ(1)

dλ
< 0
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for all λ > 1, as desired.

E.2 Note on Proposition 8

We used the notation C1,β(λ) in the text to refer to the fraction of agents in the largest compo-

nent of the potential adopter network in the largest equilibrium. This is different to the ex-ante

expected size of diffusion, but the comparative statics are the same for both. In particular,

C1,β(λ) = σ∗(1− ρσ∗),

where σ∗ is the largest equilibrium under β and given λ, while the ex-ante expected size of

diffusion is

C1,β(λ)× P(seed triggers a large cascade) = σ∗(1− ρσ∗)2,

so we see that the relevant comparative statics are identical from the ex-ante perspective.

F Extensions

F.1 Discussion of the Assumptions

F.1.1 Nonconstant Values and Transformation of Influence

To isolate the strategic effect of influence, we took the spillover v to be constant for all agents. In

some strategic settings, the value from influencing additional agents to take the action depends

on how many agents one anticipates are already going to take it. For example, the marginal

benefit from participation in a public protest may be smaller when a large number of agents

are already attending— in other words, the value of participation exhibits diminishing marginal

returns.

To this end, fix λ and suppose that v = f(ζσ) ̸= 0 is a weakly decreasing function of ζσ, where

ζσ = σ(1 − ρσ) is the size of a large cascade under the strategy σ.6 Then analogous with (8),

agents prefer to choose action 1 when Iλ(σ) >
c

f(ζσ)
− 1. Since c

f(ζσ)
is weakly increasing, and

Iλ(σ) is strictly decreasing for σ > σcrit, it follows that either all equilibria are nonviral, or

there is a unique viral equilibrium. Since influence attains its maximum value at the critical

threshold, a unique mixed viral equilbrium exists if and only if influence exceeds the threshold

at the σcrit:

Iλ(σ
crit) > c

f(σcrit)
− 1 ⇐⇒ 1

1− δ
>

c

f(σcrit)
.

6More generally, we may take v = f(σ) for a decreasing function of σ and our main results on viral equilibria
are preserved.
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It follows that whenever a viral equilibrium exists, our characterization in Proposition 4 remains

virtually unchanged for λ ≥ 1— a viral full-adoption equilibrium emerges continuously around

λ = 1 and there is a threshold λ at which the unique viral equilibrium transitions to a mixed

strategy. The figure below shows expected influence against c
f(σ)

− 1 for the special case where

f(ζσ) = 1 − ζσ. This choice of f means that for any nonviral equilibria, f(ζσ) = 1, so the

threshold at which nonzero equilibria emerge is c− 1. In the figure below we take δ = .8, c = 2

and λ = 2.5.7

Figure F1: Externalities which decrease in the fraction of the population that adopt have the
same qualitative features as our model whenever a viral equilibrium exists.

The figure demonstrates that the characterization in Proposition 4 applies here: importantly at

λ = 1 a viral full-adoption equilibrium emerges. As λ increases there is a threshold λ at which

the unique viral equilibrium transitions to a mixed strategy.

Another natural change to the values in the utility function would be to allow for heterogene-

ity. If values were unknown but drawn from a common, atomless distribution, say vi ∼ V , then
agents’ strategies become a function of their privately realized value: σ = σ(vi) (Appendix F.1.3

relies on a similar analysis). Fixing any (symmetric) strategy σ(v) from other agents, an indi-

vidual’s best response always take on the form of a threshold: if v > v∗, take action 1, if v < v∗

take action 0. Hence equilibrium takes the form of a threshold rule: all agents with “sufficiently

high” values take the action. As such, expected influence can be computed by conditioning the

branching process on agents having values at least v∗. As long as this occurs with probability

that is independent of agents’ degree, it simple scales down the size of the potential adopter

network in the same way as λ or σ. For example, if agents play adopt when v > v∗ and don’t

adopt otherwise, then nonviral influence would be given by

δλP(v > v∗)

1− δλP(v > v∗)
.

7These choices of parameter values give us a natural comparison with Figure 4— we could alternatively take
c = 1 and f(ζσ) = 0.5(1− ζσ).
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The analysis in this case becomes rather tedious without—as far as we can tell—adding any new

qualitative insights, so we view our assumption of homogeneous values as a useful benchmark.

A related but distinct assumption in our model is that influence directly scales v (or more

generally, some function of v). If influence were transformed by some function the qualitative

features of our model would not change as long as the transformed influence is weakly increasing

for σ < σcrit and weakly decreasing for σ > σcrit. So, for example, any positive monotone

transformation of influence preserves the qualitative features of our model.

In sum, our model is robust to several alternative utility specifications including diminishing or

heterogeneous values and transformations of influence.

F.1.2 No Viral Inference

In our model, agents correctly update their beliefs about their expected degree upon exposure

when there is a giant component of potential adopters in the network (this is viral inference).

A natural question is whether our results change qualitatively if agents are naive in the sense

that they take the degree distribution to the be that of the underlying network regardless of

whether they are in the giant component. Since exposure informs an agent that at least one of

their links is in the giant component, it stands to reason that viral inference should decrease

the expected influence relative to naive beliefs. It is easily shown that expected influence in a

naive version of the Poisson model is given by

Iλ(σ) =
δλσρσ

1− δλσρσ
,

so the −δρσ term in Lemma 2 is the “correction” due to viral inference.

In Figure F2, we plot the expected influence accounting for viral inference, relative to expected

influence with naive updating. We plot this only for λ > 1 since this is the only time viral

strategies exist, and we mark λ̃ < λ as the upper thresholds for emergence of viral mixed

equilibria under VI and no-VI. We see, as explained in our analysis above, that the expected

influence under naive updating lies strictly above the expected influence with viral inference:

agents believe they are too influential.

To conclude this section, we emphasize that the introduction of viral inference into the model

did not change the qualitative results of our characterization of equilibrium precisely because

the expected influence remained qualitatively the same as in the Poisson model. Our analysis

of graphs with an arbitrary degree distribution is in many ways analogous (see next section)

and we provide further examples illustrating the same point.
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Figure F2: Influence with (Iλ) and without (IN
λ ) viral inference

F.1.3 Knowledge of Degrees

A critical assumption that simplifies our analysis is that agents do not know their degree. In

the settings we are primarily interested in (e.g., participation in a protest), this is a reasonable

assumption. In other settings, it may be of interest to know how agents behave when they have

knowledge of their degree.

Suppose that agents know their degree. Then, strategies become functions of the degree, i.e.,

σ : N → [0, 1]. Since the graph is locally tree-like, higher degrees translate multiplicatively into

higher influence. Under degree distribution Dθ and strategy profile σ ≡ {σ(d)}d≥0, the expected

utility from a prosocial action by an agent of degree d is

ED[uβ(σ, d))] = (v + c) + v(d− 1)Iθ(σ).

It is straightforward to observe that equilibrium Bayesian strategies will take a threshold form.

In the case of a prosocial behavior, agents adopt (not-adopt) with degrees strictly above (below)

a threshold degree kthres and may potentially mix at the threshold.8 Note that agents with

d = 1 either never (always) adopt in the case of prosocial (antisocial) behaviors. Existence of

equilibria can be proved from Brouwer’s fixed point theorem, and we can write down an explicit

form for the expected influence Iθ(σ) in terms of generating functions. The fact that influence is

maximized at the critical threshold λ = 1 suggests that prosocial behaviors emerge continuously

and antisocial behaviors emerge discontinuously in this setting as well.

8Of course vice-versa in the case of an antisocial behavior.
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F.2 A Note on Condition 1

Condition 1 can be weakened to the following.

Condition 2. Let σ ∈ [0, 1] be any strategy.

(i) If σ is viral, then Iθ(σ) is strictly decreasing in σ.

(ii) Iθ(1) is strictly decreasing in θ for all θ > θcrit.

In Condition 2 we have removed case (i) of Condition 1 since we can show it always holds, and

we have replaced the condition that Iθ(σ) is strictly decreasing in θ for all viral σ, with the

condition that this is true at σ = 1. This amended condition is sufficient for virtually the same

equilibrium analysis as we did in the Poisson model, because full-adoption of prosocial behaviors

is always an equilibrium around the critical threshold, and (ii) guarantees that as θ get large

there is a point where full-adoption is no longer an equilibrium.

F.3 Additional Working for Examples in Section 5.2

F.3.1 Zipf Distribution

It is easily shown that

G1(z) =
1− e−α

1− e−αz
.

Thus, the extinction probability ρσ = G1(1− σ + σρσ) is given by

ρσ =
1

θσ
, (F13)

where we define θ = (eα − 1)−1. It follows that the critical threshold θcrit for the emergence of

the giant component is simply θ = 1 (or equivalently, α = ln(2)) so that an equilibrium is viral

iff θσ > 1.9

We will do everything here in terms of α, but it is straightforward to translate all our results in

terms of θ = (1− eα)−1. In general the generating function for a Zipf distribution is given by

G0(z) = zkΦ(ze−α, 1, k).

So in the special case where k = 1, we get

G0(z) =
ln(1− e−αz)

ln(1− e−α)
.

9The reason we define θ = (eα − 1)−1 is so that can write the results here in a similar way to the Poisson
model where virality depended on λσ.
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It follows that

G1(z) =
G′

0(z)

G′
0(1)

=
1− e−α

1− e−αz
,

as claimed. The extinction probability ρσ under the strategy σ must satisfy

ρσ =
1− e−α

1− e−α(1− σ + σρσ)
.

We claim that ρσ = eα−1
σ

solves this. To see this, observe that

ρσ
(
1− e−α(1− σ + σρσ)

)
= −ρ2σσe

−α +
(
1− e−α(1− σ)

)
ρσ,

and so substituting ρσ = eα−1
σ

we get

−
(
eα − 1

σ

)2

(σe−α +
(
1− e−α(1− σ)

)eα − 1

σ

=
1

σ

[
−(e2α − 2eα + 1)e−α + (eα − 1− 1 + e−α) + σ(1− e−α)

]
=

1

σ
σ(1− e−α)

= 1− e−α,

and so eα−1
σ

is a fixed point of the equation ρσ = G1(1 − σ + σρσ). It is in fact the smallest

solution and therefore the extinction probability.10

Importantly, it follows from our analysis that

σρσ = eα − 1.

To calculate the expected influence, we first calculate

G′
1(z) =

e−α(1− e−α)

(1− e−αz)2
=

eα − 1

(eα − z)2
.

10We omit the details here but this follows from the fact that it is the smallest root of the quadratic which
solves ρσ = G1(1− σ + σρσ).
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So at z = 1− σ + σρσ,

G′
1(1− σ + σρσ) = G′

1(1− σ + (eα − 1))

= G′
1(e

α − σ)

=
eα − 1

(eα − eα + σ)2

=
eα − 1

σ2

=
ρσ
σ
.

Hence σG′
1(1 − σ + σρσ) = ρσ. The last step is to calculate the expected number of neighbors

who are potential adopters. We have

G
(k)
0 (1− σ) = G

(k−1)
1 (1− σ)G′

0(1) = −(k − 1)!(eα − 1)

(eα − (1− σ))k
× 1

(eα − 1) ln(1− e−α)
,

and so

∞∑
k=1

k(1− ρkσ)
σk

k!
G

(k)
0 (1− σ) = − 1

ln(1− e−α)

∞∑
k=1

k

[(
σ

eα − (1− σ)

)k

−
(

ρσσ

eα − (1− σ)

)k
]
,

Now,
∞∑
k=1

(
σ

eα − (1− σ)

)k

=
σ/(eα − (1− σ))(

σ
eα−(1−σ)

− 1
)2 =

1

1− σ
eα−(1−σ)

− 1 =
σ

eα − 1

and similarly,

∞∑
k=1

(
σρσ

eα − (1− σ)

)k

=
σ/(eα − (1− σ))(

σρσ
eα−(1−σ)

− 1
)2 =

1

1− σρσ
eα−(1−σ)

− 1 =
eα − 1

σ
.

Finally, we have

1

1−G0(1− σ + σρσ)
=

1

1− ln(e−ασ)
ln(1−e−α)

=
ln(1− e−α)

ln(eα − 1)− ln(σ)
.
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Making the substitution ρσ = eα−1
σ

and putting everything together, we have

1

1−G0(1− σ + σρσ)

∞∑
k=1

k(1− ρkσ)
σk

k!
G

(k)
0 (1− σ)

= − 1

ln(ρσ)

(
ρ−1
σ − ρσ

)
=

1− ρ2σ
−ρσ ln(ρσ)

.

Hence the expected influence when σ is viral (making the substitution θ = (eα−1)−1 = (σρσ)
−1)

is

Iθ(σ) =
δρσ

1− σδG′
1(1− σ + σρσ)

[
1− ρ2σ

−ρσ ln(ρσ)
− 1

]
=

δρσ
1− δρσ

[
1− ρ2σ

−ρσ ln(ρσ)
− 1

]
=

δ(1− ρ2σ)

−(1− ρσ) ln(ρσ)
− δρσ

1− δρσ

=
δ(θσ + 1)(θσ − 1)

θσ(θσ − δ) ln(θσ)
− δ

θσ − δ
,

which is precisely the expression given in Section 5.2.1. On the other hand if σ is nonviral, then

Iθ(σ) =
σδG′

1(σ)

1− σδG′
1(σ)

=
σδ

eα−1

1− σδ
eα−1

=
1

eα−1
σδ

− 1
.

We do not attempt to show that Condition 1 holds but it is evidently true from Figure 7.

F.3.2 Exponential Distribution

The generating function for this distribution is given by

G0(z) =
z

µ− z(µ− 1)
,

where µ = (1− e−α)−1, and so

G1(z) =
1

[µ− z(µ− 1)]2
.

The extinction probability ρσ is therefore the solution of a cubic equation and is solvable by

radicals. It is easy to show that G′
1(1) = 2(µ− 1), and so subcritical influence (when ρσ = 1) is

given by

Iµ(σ) =
4δσ(µ− 1)

1− 2δσ(µ− 1)
.
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It’s clear that this expression is increasing in both µ and σ, and moreover that σ is viral if and

only if σ > 1
2(µ−1)

. We can also show that, quite remarkably, that

1

1−G0(1− σ + σρσ)

∞∑
k=1

k(1− ρkσ)
σk

k!
G

(k)
0 (1− σ) = 1 +

2σ(µ− 1)

1 + σ(µ− 1)(1− ρσ)
.

The extinction probability is the smallest solution in [0, 1] to the equation

ρσ =
1

[µ− (1− σ + σρσ)(µ− 1)]2
.

Using computational software (or otherwise), we find that when ρσ < 1, it is given by

ρσ =
2 + σ(µ− 1)

2σ(µ− 1)
−
√

4 + σ(µ− 1)

2
√
σ(µ− 1)

.

Notice that the key parameter here is σ(µ − 1). In fact we can rewrite everything in terms of

µ = 2σ(µ− 1) so that

ρσ =
4 + µ

2µ
−

√
8 + µ

2
√
µ

.

The expected forward degree is given by

G′
1(1) = 2(µ− 1) > 1 ⇐⇒ µ >

3

2
.

Or in terms of α,
1

1− e−α
>

3

2
⇐⇒ 0 < α < ln(3).

So here, α = ln(3) is the critical threshold for the emergence of the giant component, which we

can more conveniently state as µ = 1. Some work shows

σG′
1(1− σ + σz) =

2(µ− 1)σ

(µ− (µ− 1)(1− σ + σz))3
.

and substituting ρσ into this function gives

σG′
1(1− σ + σρσ) =

16√
(µ− 1)σ(

√
(µ− 1)σ +

√
4 + (µ− 1)σ)3

Putting this all together and making the substitution θ = 2σ(µ − 1), we have (after some

algebraic manipulation)

δρσ
1− δσG′

1(1− σ + σρσ)
=

8δ
√
θ
(
(4 + θ)

√
θ + θ

√
8 + θ + 4δ(

√
θ −

√
8 + θ)

) . (F14)
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Next we calculate the expected forward degree conditional on exposure under a viral strategy.

We have

G
(k)
0 (1− σ) =

k!(µ− 1)k−1µ

(1 + σ(µ− 1))k+1

So

∑
k

k(1− ρkσ)
σk

k!

[
k!(µ− 1)k−1

(1 + σ(µ− 1))k+1

]
=

µσ

(1 + σ(µ− 1))2

∑
k

k(1− ρkσ)

[
σ(µ− 1)

1 + σ(µ− 1)

]k−1

=
µσ

(1 + σ(µ− 1))2

 1(
1− σ(µ−1)

1+σ(µ−1)

)2 − ρσ
1(

1− ρσσ(µ−1)
1+σ(µ−1)

)2


= µσ

[
1− ρσ

(1 + σ(µ− 1)(1− ρσ))
2

]
.

Next, we have

1

1−G0(1− σ + σρσ)
=

1 + σ(1− ρσ)(µ− 1)

1 + σ(1− ρσ)(µ− 1)− (1− σ + σρσ)
=

1 + σ(1− ρσ)(µ− 1)

µσ(1− ρσ)
.

Putting everything together, we have∑∞
k=1 k(1− ρkσ)

σk

k!
G

(k)
0 (1− σ)

1−G0(1− σ + σρσ)
=

1 + σ(1− ρσ)(µ− 1)

µσ(1− ρσ)
· µσ

[
1− ρσ

(1 + σ(µ− 1)(1− ρσ))
2

]

=
(1− σ(1− ρσ)(µ− 1))2 − ρσ
(1− σ(1− ρσ)(µ− 1))(1− ρσ)

=
1 + 2σ(µ− 1) + σ(µ− 1)(1− ρσ)

1 + σ(µ− 1)(1− ρσ)

= 1 +
2σ(µ− 1)

1 + σ(µ− 1)(1− ρσ)

= 1 +
2θ

2 + θ(1− ρσ)
.

Hence subtracting 1 for the neighbor in the giant component, the expected number of potential

adopting neighbors under an exponential degree distribution is simply 2θ
2+θ(1−ρσ)

. Multiply-

ing (F14) by 2θ
2+θ(1−ρσ)

gives the desired expression after some further simplification.
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