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Abstract
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(public bads). Our notion of influence captures the causal effect of an agent’s adoption

decision on the adoption decision of others in the network. We study a phase transition

in equilibrium behavior around which viral equilibria—where diffusion occurs among a

nontrivial fraction of the population—emerge. Public goods exhibit a continuous phase

transition in equilibrium adoption, while public bads exhibit a discontinuous transition–

they emerge suddenly. Our findings reconcile disparate evidence that attending a public

protest is a strategic complement in some settings and a substitute in others.
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1 Introduction

On September 13, 2022, a 22-year-old Iranian Kurdish woman named Mahsa Amini was arrested

by the morality police in Tehran for failing to comply with Iran’s mandatory headscarf (hijab)

laws. She passed away in a hospital three days later under suspicious circumstances. This

sparked a revolt in Iran, marking a significant period of civil unrest. There were street protests

in which some women tore off their hijabs and demonstratively twirled them in the air, while

others threw their hijabs into a bonfire. A common element of protest movements are observable

symbols of participation / support for the movement.1 These symbols raise awareness for the

movement and help to facilitate the spread of support through a population.

Participation in protest movements are privately costly but potentially generate wide-spread

benefits (public goods) if the movement achieves its goals. The observable nature of participation

raises awareness of the movement and thereby potentially influences other individual’s decision

to participate.2 If those individuals then choose to join the movement their decision may lead

others to join and so forth. Thus, an individual may benefit through how their decision influences

the diffusion of the action to others, thereby creating positive externalities. The aim of this

paper is to develop a model of privately provided public goods and bads where the observable

nature of the action serves to spread awareness. We seek to understand how the strategic

consideration introduced by observational learning determines the equilibrium level of provision

and systematic differences in the emergence of public goods versus public bads.3

In our model, agents make a single adoption decision (e.g., whether or not to join a protest

movement), which—in the case of a public good—entails a private cost (e.g., being arrested)

that exceeds the privately created benefit of the action, but creates a positive externality for

everyone else in the population (e.g., increases the probability the movement is successful). In

the case of a public bad, the private benefit exceeds the private cost and adoption creates a

negative externality. The key innovation in our paper is to explicitly model the externality as

something which arises as an equilibrium object that depends both on equilibrium strategies

and on the structure of the network on which diffusion takes place. Individuals are connected

to each other in a network (modeled as a random graph) where a connection in the graph allows

1Such examples are plentiful and include the use of a specific color, gesture, or display of personal items. For
example, consider the Orange Revolution in Ukraine, the 3-finger salute in Thailand, the raised clenched fist
in the U.S. Black Lives Matter protests, the Umbrella Movement in Hong Kong, Guy Fawkes masks used by
Occupy Wall Street protesters, etc.

2The importance of observational learning in the diffusion of a protest is exacerbated by governmental and
media censorship.

3The types of public goods and bads we have in mind are ones that are created through private deci-
sions/actions. Examples of public goods include participation in public protests, mask wearing in public when
ill, responsible consumption, engagement in the democratic process and other pro-social behaviors. Examples of
public bads include littering, graffiti, rioting/looting, spreading mis-information and other anti-social behaviors.

2



an individual to observe their neighbors adopting the behavior, at which point they become

aware of the action (e.g., joining the protest). Our model can be viewed as a diffusion game

(Sadler (2020)) wherein a randomly chosen individual initially adopts the action, then, in each

subsequent period, an individual who has observed a neighbor adopt the action in the previous

period makes a once-and-for-all decision to take or not take the action.4 The process continues

until no one else adopts.

In our model, the diffusion introduces a new strategic consideration for an individual taking the

action through its potential effect on other people’s awareness and subsequent decision to take

the action (e.g. joining the protest movement). This strategic consideration is what we call an

individual’s influence. An individual’s influence is defined as the number of additional people

that take the action by the end of the game when the individual takes the action relative to

the number of people who would take the action if the individual did not take it. Individual

behavior creates either positive spillovers (public goods) or negative spillovers (public bads) in

that agents receive positive utility from influencing others to adopt a public good, while they

receive disutility from influencing others to adopt a public bad. Thus, influence encourages

public good behaviors and discourages public bad behaviors.

Central to our analysis is the interaction between influence and network density (average number

of connections) and their effects on the size of diffusion. Network density has two countervailing

effects on influence. First, more connections may increase influence because more people observe

any one individual’s decision to adopt (the “local effect” of density). Second, a network with

more connections has more potential paths of via which agents can become informed, reducing

each individual’s influence (the “global effect” of density). When there are multiple disjoint

paths along which diffusion can occur from the initial seed to an individual, none of the people

on either one of those paths has influence over that individual’s decision. This occurs because if

any agent in one of the paths does not adopt, the individual will still become aware through the

other path. It is the interaction between these two forces that generates non-trivial effects of

network density on equilibrium behavior. To the best of our knowledge, our notion of influence

is new to the networks literature.5 We use random graphs to model the interaction among the

players. This gives us a degree of tractability in explicitly characterizing the two countervailing

forces of influence that would seem otherwise intractable using alternative network models. In

the spirit of Erdös and Renyi’s (1959) classic result on the emergence of the giant component in

4In this setting, an individual has only one opportunity to take the action upon first becoming aware of it,
so there is no possibility of strategically delaying a decision to act.

5Our notion of influence captures a kind of exclusive influence where an agent’s payoff depends only on
the subset of others that cannot be influenced by any other agent the original agent does not influence. Put
differently, influence captures a kind of pivotality over others’ adoption decisions. In the simple setting where a
graph is a line or a tree, our definition of influence coincides with that of Bénabou et al. (2020); however, in our
setting we are also able to capture the global effect of density.
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random graphs, we study a phase transition in equilibrium behavior as the density of the random

graph increases. In particular, there exists a critical threshold level of network density below

which the diffusion of actions are contained to a negligible fraction of the population (non-viral

equilibria) and above which the diffusion of actions may spread to a nontrivial fraction of the

population (viral equilibria).

In our analysis, we first characterize the expected influence as a function of symmetric strategies

and of the network density. In sparse networks, increasing network density increases the expected

influence, while in dense networks, increasing the density decreases the expected influence.

The properties of influence implies that adoption exhibits strategic compelmentarities in sparse

networks and strategic substitutability in dense networks. This finding can reconcile disparate

evidence that attending a public protest is a strategic complement in some settings and a

substitute in others.6 We then offer a full characterization of symmetric equilibria and classify

them into four different cases: No-adoption, full-adoption, viral mixed, and nonviral-mixed.

One of the significant consequences of our analysis is the stark difference between the phase

transition in equilibrium behavior for public goods compared to public bads, despite the fact

that the utility of adopting a public bad is simply the negative of the utility of adopting a public

good. Public goods exhibit a continuous phase transition in equilibrium adoption, while public

bads exhibit a discontinuous transition—they emerge suddenly.

Finally, we study the choice of network density by a social planner. The planner chooses the

network density to maximize the ex-ante expected diffusion of public goods and minimize the

diffusion of public bads before knowing which of these will spread on the network. We show

that regardless of the relative likelihood that a public good versus public bad diffuses through

the population, the socially optimal density of the network is achieved at precisely the critical

point where the phase transition for public bads occurs. Consequently, if a social planner sets a

level of network density below but arbitrarily close to this level it may achieve arbitrarily close

to the welfare maximizing level of utility.

1.1 Related literature

Our model is related to several different strands of the literature.

Network games on fixed networks and diffusion

There is a large literature on games on networks (Jackson and Zenou, 2015; Bramoullé and

Kranton, 2016; Jackson et al., 2017) where the network is fixed and not random. In these

6See Cantoni et al. (2019) and Bursztyn et al. (2021).
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models, the links between players represent a strategic externality from one player’s action

on another player’s utility. Within this class of models, games with strategic complements

and/or strategic substitutes with continuous actions have been studied (e.g.(Ballester et al.,

2006) and Bramoullé et al. (2014)). The case of a privately provided public good has also been

explicitly considered in Bramoullé and Kranton (2007), Allouch (2015), Allouch (2017) and

Elliott and Golub (2019). There are also many papers that study network games with discrete

actions (Granovetter, 1978; Schelling, 1978; Blume, 1993; Ellison, 1993; Morris, 2000; Brock and

Durlauf, 2001; Leister et al., 2022; Langtry et al., 2024) and study contagion on a fixed network.

These are games with strategic complementarities in which the benefits of taking action “1”

(e.g., adopting a new technology) increase with other individuals taking the same action. In

such a case, an agent will take action 1 if a sufficient fraction of their neighbors has taken action

1 (i.e., a threshold decision). These models show that the possibility of contagion depends on the

network structure. In particular, Morris (2000) shows how the spread of behavior in a network

can depend on the network’s cohesiveness.

Our framework differs from these fixed-graph models in two key ways: first, we use random

graphs, and second—and more importantly—in our model, network connections allow observa-

tion of another person’s adoption but do not indicate the presence of an externality from one

person’s decision on another. In our case, externalities are global and, conditional on the action,

independent of the network. This means we do not have a threshold rule based on the fraction

of neighbors who adopt; instead, the decision to take an action is primarily influenced by the

expected impact on others, whether they are direct neighbors or not.

Network games on random graphs and diffusion

There is also a literature on network games using random graphs to study diffusion.7 In par-

ticular, economists have been using the random graphs techniques involving phase transitions

to study diffusion in economic contexts (Watts, 2002; Campbell, 2013; Sadler, 2020; Akbarpour

et al., 2023; Langtry, 2023; Campbell et al., 2024). In these models, adoption decisions depend

on the structure of the network and its components.8 There is also a literature using thresh-

old models on random graphs, so that agents decide whether or not to take a binary action

depending on the fraction of neighbors who take the same action (Jackson and Yariv, 2005;

López-Pintado, 2006, 2008; Jackson and Yariv, 2007, 2011; Jackson and López-Pintado, 2013;

Campbell et al., 2024).

The closest model to ours is that of Sadler (2020), who studies the emergence of a giant com-

7For an overview, see Newman et al. (2001), Kleinberg (2007), Vega-Redondo (2007), Jackson (2008) and
Easley and Kleinberg (2010).

8Dasaratha (2023) instead focuses on network formation and examines the interaction between strategic
incentives and network structure.
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ponent in a game with strategic complementarities between direct neighbors. Our model is

different in that strategic considerations arise from global rather than local externalities and

so adoption is not necessarily complementary. That is, the number of adopting individuals in

the entire network (whether or not they are direct neighbors) affects an individual’s utility.9

Moreover, our emphasis on the distinction between the diffusion of public goods and public

bads has not been studied in this literature.

Collective action

There is a large literature on collective action. The theoretical literature usually assumes strate-

gic complementarity because the cost of taking (for example) joining a protest is anticipated

to be lower when a protest is larger (e.g., Kuran, 1989, 1991, 1997, Chwe, 2000, Bueno de

Mesquita, 2010, Edmond, 2013, Battaglini, 2017, Passarelli and Tabellini, 2017, Barberà and

Jackson, 2020, and Egorov and Sonin, 2021). There is also a literature which assumes that

actions are strategic substitutes because agents have an incentive to free-ride on the costly par-

ticipation of others, and may thus be less willing to turn out when they believe more others will

do so (Olson, 1965, Tullock, 1971, Palfrey and Rosenthal, 1984, and Shadmehr and Bernhardt,

2011).

Here, as with many network models, the collective action problem faced by agents is usually

modeled as a threshold phenomenon. However, most of this literature does not focus on the role

of networks on diffusion (Chwe (2000) is an exception). We have a model of collective action

in which the network is explicitly modeled and in which diffusion is related to the emergence

of a giant component in a random network. An interesting new feature of our model is that,

in the case of public goods (e.g., protests), adoption strategies are strategic complements when

the network is sparse and strategic substitutes when the network is dense. In the context

of Hong Kong’s anti-authoritarian movement, Cantoni et al. (2019) find evidence of strategic

substitutability in protest participation while Bursztyn et al. (2021) find that incentives to

attend one protest within a political movement increase subsequent protest attendance but only

when a sufficient fraction of an individual’s social network is also incentivized to attend the

initial protest (i.e., attendance seems to exhibit strategic complementarities).

9In Sadler (2020), adoption externalities only arise when a person also adopts. Hence, the number of adopting
neighbors when an individual does not adopt is an irrelevant strategic consideration.
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2 The Model

2.1 Outline

In this section, we present a model of diffusion on an Erdös-Renyi random graph.10 Let

{G(n, p)}n∈N be a sequence of Erdös-Renyi (or binomial) random graphs, where p = p(n) = λ
n

for some λ ≥ 0. We endow {G(n, p)}n∈N with the structure of a game G(n) = (G(n, p),A, u) as

follows. Each vertex i ∈ {1, . . . , n} represents an agent, and each agent faces a binary adoption

decision ai ∈ A = {0, 1}. If player i chooses the action ai = 1, we say that player i is an

adopter.11

The game G(n) is played over n+ 1 time periods t,. Denote by ai(t) the action player i at time

t. At t = 0, every player has action ai(0) = 0. At t = 1, nature makes three moves:

1. First, nature draws a graph G = G(n, p) by including each possible edge independently

with probability p.

2. Second, nature chooses a “seed” uniformly at random and,

3. Third, the seed adopts the public good or public bad π ∈ {g, b}.12

For all t ≥ 2, neighbors of an adopter in the previous period are exposed and make a once and

for all decision to adopt or not. Hence, the adoption decision occurs upon the first exposure for

an individual but not again on any future occurrences.

2.2 Payoffs

At the end of the game, an agent i’s payoff is a function of their own action ai and the actions

a−i’s of the other agents. It is given by:

uπ(ai, a−i) =


intrinsic cost︷ ︸︸ ︷
(v − c)ai +

externality︷ ︸︸ ︷
v
∑
j ̸=i

aj , if π = g

(c− v)ai − v
∑

j ̸=i aj, if π = b.

(1)

where v captures the common value to all agents from each one of them who adopts and c > v

10We extend our model to an arbitrary degree distribution in Section 5.1.
11This model along with its more general analogue are similar to that of a single-type diffusion game (Sadler,

2020). We use Sadler’s framework as a convenience to analyze the role of influence in the diffusion of public
goods and bads.

12One can think of the seed as a non-strategic individual who exogenously wishes to engage in the particular
behavior.
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is the private cost (benefit) to an individual from adopting a public good (bad) behvavior. An

agent’s utility can be written as a combination of an intrinsic payoff from the action and an

externality from the actions of others. We assume that the intrinsic payoff has the opposite sign

to the externality; hence, the intrinsic payoff is negative (positive) in the case of a public good

(bad).

2.3 Strategies

We make a number of assumptions about the information set available to a player at the time

when they are first exposed. First, agents do not know their degree but believe correctly that it

is distributed according to a binomial distribution with parameter p = λ/n.13 Second, they do

not know which of their neighbors has chosen to adopt or not, other than at least one has chosen

to adopt. Third, they do not know the time period that they act (i.e. the time that has passed

since the seed adopted). These guarantee that each agent acts at a single information set, all

agents are symmetrically informed at the moment each acts, and each agent i’s strategy may

be characterized by a potentially mixed strategy over a single action σi = P(ai = 1) ∈ [0, 1].

The strategy σi tells an agent i the probability with which they take the action if they are

exposed. We confine our attention to symmetric equilibria, that is, where all players play the

same strategy σ∗
i = σ∗ for all i.

2.4 Influence

For any agent i (adopter or otherwise), we can consider the random number of other agents

who adopt if i were to adopt, but do not have the opportunity to adopt otherwise (i.e., the

information set where those agents have the opportunity to take an action is not reached). This

is what we refer to as an agent i’s influence: the number of agents that agent i causes to adopt

by choosing ai = 1. Consider the example in Figures 1 and 2, which shows the connected

component containing the seed in a potential adopter network. The seed is colored blue, agents

colored black have zero influence, and agents colored green have nonzero influence over the

agents colored red that are adjacent to them.14 In this example, if any of the green colored

nodes chose to not adopt then the red nodes adjacent to them would become disconnected from

the component containing the seed. In total, the reduction in the number of individuals adopting

would be equal to the green node and the adjacent red nodes. Furthermore, to illustrate how

fewer network links may increase the influence of agents, consider how influence changes after

removing the links associated with a single vertex (as we do in Figure 2). In Figure 1, the

13We discuss the case where agents know their own degrees in Section 5.3.2.
14Some of the red nodes also have nonzero influence, but for illustration we are focusing on the neighbors of

the seed.
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first green node to the right of the seed has influence over only a single agent. This is because

the other nodes adjacent to it are on an alternate path between the green node and the seed.

But once we remove the second path, we increase the influence of this agent from 1 to 3. This

is an example of what we earlier referred to as the global effect of density: decreasing the

connectivity of a graph can increase the influence of agents within that graph. This happens

precisely because removing links may disconnect loops thereby increasing the influence of agents

on those loops. This idea is formalized in Proposition 2.

Figure 1: Influence Figure 2: Removing a node

In expectation, the number of agents over which i has influence depends on the strategy σ which

i expects others to play, and on the structure of the network. We write E(n)
σ for an expectation

taken in G(n) assuming players follow the strategy σ, and define Eσ = limn→∞ E(n)
σ . Similarly,

define E(n)
Dn

to be an expectation taken in G(n) over the degree distribution Dn = Bin(n, p), and

define ED as its limit, where D = Po(λ)—the Poisson distribution. We then define I(n)
λ (σ) and

Iλ(σ) (read “the expected influence under σ”) by

I(n)
λ (σ) ≡ E(n)

Dn

[
E(n)

σ [
∑
j ̸=i

aj|ai = 1, hi]− E(n)
σ [
∑
j ̸=i

aj|ai = 0, hi]

]
, and (2)

Iλ(σ) ≡ lim
n→∞

I(n)
λ (σ) = ED

[
Eσ[
∑
j ̸=i

aj|ai = 1, hi]− Eσ[
∑
j ̸=i

aj|ai = 0, hi]

]
. (3)

Suppose all players are playing strategy σ. We normalize the utility of not adopting to 0 and we

denote the expected change in utility from adopting by u
(n)
π (σ) ≡ E(n)

σ [uπ(1, a−i) − uπ(0, a−i)],

and uπ(σ) in the limit as n → ∞.15 Now, using the notation in (3) and the utility function (1),

we can write the expected difference in utility to an agent from adopting ai = 1 versus not

15The expectation here is taken over a given fixed graph so that influence is well defined.
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adopting ai = 0 at the information set where they have the opportunity to act—in particular,

when they hold imperfect information about the graph—as:

E(n)
D [u(n)

π (σ)] =

v − c+ vI(n)
λ (σ), π = g

c− v − vI(n)
λ (σ), π = b.

(4)

Observe that our definition of (expected) influence Iλ(σ) captures the causal effect of adoption

on others’ adoption—that is, the expected influence of agent i is the (random) number of other

agents who adopt if i adopts but would not adopt otherwise.

3 Analysis

3.1 Existence of Equilibrium

A symmetric perfect Bayesian equilibrium16 in the game G(n) is a single strategy σ∗ satisfying:

σ∗ = 1 =⇒ E(n)
Dn

[u(n)
π (σ)] ≥ 0

σ∗ ∈ (0, 1) =⇒ E(n)
Dn

[u(n)
π (σ)] = 0

σ∗ = 0 =⇒ E(n)
Dn

[u(n)
π (σ)] ≤ 0.

and beliefs over nodes in the extensive form where an agent is exposed under the strategy σ∗

and Nature’s choice of a random graph with degree distribution Dn. Beliefs are only payoff

relevant for determining the expected influence of each agent and, given the symmetry of our

game, this will be identical for each agent. It will be convenient to avoid specifying the beliefs

themselves and rather specify the calculation of expected influence as a function of σ∗ and Dn

with the understanding this is through a set of beliefs formed via Bayes rule for each agent. The

calculation of influence in the finite n case is discussed in Appendix B.

Proposition 1. There exists a symmetric perfect Bayesian equilibrium in the game G(n).

We now focus on symmetric equilibria in the limit as n → ∞.

Definition 1. Let σ′ and σ be strategies. We say that σ′ is a limit best-reply to σ, if

lim
n→∞

E(n)
Dn

[u(n)
π (σ)] ≥ 0 whenever σ′ = 1, and (5)

lim
n→∞

E(n)
Dn

[u(n)
π (σ)] ≤ 0 whenever σ′ = 0. (6)

16All references to equilibria should be understood as meaning “symmetric equilibira”.
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The strategy σ′ is a limit equilibrium if σ′ is a limit best-reply to itself.

A limit equilibrium is an epsilon equilibrium for any ϵ > 0 and all sufficiently large n. Further-

more, we will show generically that it can be found as a limit of a sequence of symmetric perfect

Bayesian equilibria as n → ∞ in the finite player game G(n) (see Appendix D for more detail).

3.2 Potential Adopter Network

In a symmetric equilibrium, all potential adopters are determined by the realization of their

strategy σ∗. Following the realization of the graph G(n, p), one can imagine realizing n indepen-

dent Bernoulli random variables with parameter σ∗, one for every individual in the network. The

realization of these variables establishes the subgraph of G containing all “potential adopters”,

which we call the potential adopter network.17 The location of the seed determines who actually

adopts. The number of adopters is determined by the size of the component containing the

seed in the potential adopter network. Hence, central to our analysis will be the component

structure of the potential adopter network, which itself is a random graph given by G(σn, σp).

At this point, we need to introduce the notion of a giant component in a random graph. A classic

result of Erdős and Rényi (1959) is the phase transition in the size of the largest component in

G(n, λ/n) around λ = 1. The result states that as n → ∞,

1. Sub-critical region λ < 1, with high probability the largest component of G(n, λ/n) has a

size which is at most c log(n) for some constant c.

2. Super-critical region λ > 1, with high probability the largest component of G(n, λ/n)

contains a fraction cn of the vertices for some constant c. Moreover, the second largest

component has a size which is at most c log(n) for some constant c.

A component which contains a constant fraction of vertices is called a giant component, so the

above result states that the binomial random graph contains a giant component that is unique

(with high probability) if and only if λ > 1. Similarly, the potential adopter network contains

a giant component if and only if λσ > 1.

Our analysis is concerned with the limit of large networks i.e., where n → ∞. In this limit, it is

well known that the Erdös-Renyi random graph G(n, λ/n) converges locally in probability to a

Poisson branching process with mean offspring λ (Van der Hofstad, 2023b, see, e.g., Thm 2.18).18

In the case λ < 1, the process stops with probability 1; however, in the case λ > 1, there is a non-

zero probability the process never goes extinct. In this case, there are two potential outcomes of

17This is commonly known as the site-percolation network in random-graph theory.
18We describe Poisson branching processes in more detail in Online Appendix A.1.
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following a randomly chosen link to one of its ends in the Erdös-Renyi random graph and finding

all subsequent connected nodes. The first outcome is that the link leads to a component with

a finite expected number of people with probability ρσ (extinction probability). The second

outcome is that the link leads to an infinite path (as n → ∞) that connects to the giant

component with probability 1 − ρσ (survival probability).19 An individual with d connections

has d independent realizations of these events. If any one of these connections leads to the giant

component, then they themselves are part of it. Hence, the probability this person is in the

giant component is 1−ρdσ. Moreover, conditional on this event (at least one connection leads to

the giant component) the distribution of extinction events over the d− 1 remaining connections

is given by Bin(d− 1, ρσ). In our potential adopter network it is well known that the extinction

probability ρσ is given by the smallest positive solution to:

ρσ = e−λσ(1−ρσ). (7)

Finally, the expected number of people reached by following a link and conditioning on extinction

is 1
1−λσρσ

.20

3.3 Inference and Calculation of Influence

The total number of adopters in an equilibrium corresponds to the number of people in the same

component as the seed in the potential adopter network. The expected influence in equilibrium

corresponds to the expected number of individuals that are connected to/disconnected from

the seed’s component when an individual does versus does not adopt. In a diffusion game,

exposure confers information about an individual’s component, in particular, the agent is in

the same component as the seed.21 This is informative of an agent’s expected influence. In the

finite network case this inference is complicated and intractable for the purposes of our analysis.

However, a consequence of local convergence of the random graph to a branching process in

large networks is that it converges to a particularly simple form.

To construct our measure of influence for an arbitrary agent i, we partition the other agents in

i’s component into those in the forward components found through each of an agent’s links.22

This construction means that agent i is essential for constructing a path between agents in

different elements of the forward component partition. In the limit of a large random graph,

19See Van der Hofstad 2023b, Thm 2.28 and its application to Erdös-Renyi random graphs Thm 2.34. For an
arbitrary degree distribution in the configuration model see also Thm 4.9 and the discussion thereafter.

20See Van der Hofstad 2023a, Thm 3.5 combined with Thm 3.15
21The probability an individual is in the same component as the seed is in proportion to the number of other

people in the same component as the individual.
22Of course, some links may result in the same forward component in which case only a single copy is maintained

in the partition; hence, there may be fewer forward components created than an agent has links.

12



these forward components (and an individual’s component) are random objects, as discussed

earlier, characterized bya Poisson branching process.

First, consider an equilibrium where λσ∗ < 1 (sub-critical region). Each forward component of

an individual is with probability one finite and independent of each other. Hence, the prob-

ability an individual with d friends is in the same component as the seed is in proportion to

their connectivity. Conditional on exposure, the updated probability of having d friends is

Pr(d|hi, λσ
∗ < 1) = dpd∑

dpd
where {pd} are the prior probabilities. Furthermore, when {pd} is

Poisson then it is well known that E[d|hi, λσ
∗ < 1] = λσ∗ + 1. Upon exposure an individual

forms an expectation over the forward components found via following each one of its links

excluding the link through which it was exposed. These components are independent realiza-

tions of a Poisson branching process with mean offspring λσ∗ where the extinction probability

ρσ = 1. The expected influence of this individual is E[d − 1|hi, λσ
∗ < 1] = λσ∗ times the

expected forward component size given by 1
1−λσ∗ .

23 and hence expected influence is:

Iλ(σ
∗) =

λσ∗

1− λσ∗ (8)

when λσ∗ < 1.

Second, consider an equilibrium where λσ∗ > 1 (super-critical region). In the super-critical

region, the network of potential adopters contains a unique giant component and upon exposure

an agent believes, almost surely, that it is in the giant component.24 In this case an agent updates

its beliefs to reflect that its number of links reflects the distribution of friendships for individuals

in the giant component and is given by Pr(d = k|hi, λσ
∗ > 1) = pk(1−ρkσ)

1−ρσ
.25 Conditional on this

event (at least one connection leads to the giant component) the remaining d−1 links are either

connected to finite forward components (probability ρσ∗) or connected to a forward component

containing everyone in the giant component other than the people contained in i’s finite forward

components (probability 1−ρσ∗). We call this forward component the giant forward component.

Therefore, i’s partition of the giant component consists of the giant forward component and the

number of successes of Bin(d − 1, ρσ) independent realizations of finite forward components.

The probability of the seed being in each of these forward components is of course dominated

Pr → 1 by the giant forward component and vanishing Pr → 0 for the finite components. The

calculation of expected influence when the seed is in the giant forward component is simply

23Exposure is informative of the size of component found via following the exposure link but, in the sub-critical
region, these beliefs do not affect the calculation of expected influence Iλ(σ).

24The giant component contains a positive fraction of the population as n → ∞ whereas the expected size of
all other components → 0. Hence, the probability of being in the same component as the seed is vanishing in
the limit n → ∞ for all components other than the giant component.

25This is termed “viral” inference in Sadler (2020).
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the expected number of people in the remaining finite forward components of the partition, in

expectation this is λσρσ
1−λσρσ

− ρσ. Now, despite the vanishing probability of the seed being in one

of the finite forward components, these events contribute non-negligibly to expected influence

because i is essential for connecting the seed to the giant forward component. The contribution

to expected influence of this event is given by the product of the probability of the seed being

in one of the finite forward components and the expected influence in this event. If the giant

component contains a fraction c of the vertices, then the probability that the seed is in one of

the finite forward components is
λσρσ

1−λσρσ
−ρσ

cn
(in the limit of a large network), which goes to 0,

while the expected size of influence diverges to cn. Hence, the contribution to influence is the

product of these and is equal to λσρσ
1−λσρσ

− ρσ.

We summarize our calculation of influence for both cases with the following lemma.

Lemma 1. The expected influence function Iλ : [0, 1] → R is given by

Iλ(σ) =

 λσ
1−λσ

if λσ < 1,

2( λσρσ
1−λσρσ

− ρσ) if λσ > 1
(9)

where ρσ is as in (7). In particular, Iλ is continuous.26

We further characterize how influence changes with agents’ adoption probability σ and network

density λ in the following proposition.

Proposition 2. Let σ ∈ [0, 1] be any strategy.

1. If σ is nonviral, then Iλ(σ) is strictly increasing in σ and strictly increasing in λ.

2. If σ is viral, then Iλ(σ) is strictly decreasing in σ and strictly decreasing in λ.

Figure 3 captures the main idea behind Proposition 2, which is a key comparative static result

for our analysis.

We see that in the sub-critical region influence diverges to +∞ at the point where the giant

component emerges. Beyond this point it is decreasing as the giant component grows. This

illustrates one of the consequences of Proposition 2 that adoption is a strategic complement

when the graph is sparse, and a strategic substitute when it is dense. Much of the literature

on network effects focuses on adoption as a strategic complement, so it is a novel feature of our

model that it encompasses both complements and substitutes as a function of the graph and

26As λσ → 1 the expected influence diverges to +∞ from the left and right and therefore is continuous on the
extended real line.

14



Figure 3: Expected influence is increasing when the network is sparse (λσ < 1) and decreasing
when the network is dense (λσ > 1).

the strategies.

4 Results

We analyze the behavior of expected influence as a function of the network density and proceed

to fully characterize symmetric equilibria for public goods and public bads. Furthermore, we

will be interested in the structure of the potential adopter network induced by an equilibrium

strategy. We call a strategy viral if it induces a giant component in the potential adopter

network, and nonviral otherwise. In our setting, there are four types of symmetric equilibria:

1. No-adoption (σ∗ = 0)

2. Viral or Nonviral Full-adoption (σ∗ = 1)27

3. Nonviral-mix (σ∗ ∈ (0, 1), λσ∗ < 1)

4. Viral-mix (σ∗ ∈ (0, 1), λσ∗ > 1)

All four types of equilibria can arise depending on the structure of the underlying graph (as

determined by λ). Clearly there can not be a viral equilibrium when the underlying graph does

not contain a giant component (λ < 1). We will show that there exists a critical value of λcrit
π

that separates regions where viral equilibria exist (λ > λcrit
π ) from those where they do not

(λ > λcrit
π ). There is a stark contrast between the transition from nonviral to viral equilibria

27When σ = 1, the potential adopter network is all of G(n, p). Hence the full adoption equilibrium is viral if
and only if λ > 1.
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around this threshold for public goods when compared to public bads. To this end, define C1,π(λ)

n

as the fraction of agents in the largest component of the potential adopter network Gπ(σ̄
∗
π(λ)),

where π ∈ {g, b} and σ̄∗
π(λ) is the largest equilibrium. We will be interested in whether the

fraction of agents who adopt in the largest equilibrium goes to zero or a limit bounded away

from zero as the density approaches the critical density from above i.e. limλ→λcrit+
π

C1,π(λ)

n
.

4.1 Public Goods

Initially we focus on the public good case π = g. When other players play according to σ,

expected utility from adoption is given by (v − c) + vIλ(σ). Hence, the best response function

takes a particular simple form characterized by a threshold level of influence:

BR(σ) =


1, Iλ(σ) >

c
v
− 1

[0, 1], Iλ(σ) =
c
v
− 1

0, Iλ(σ) <
c
v
− 1.

(10)

We characterize the structure of equilibria as a function of λ. We label each case in the proposi-

tion below with the “type” of the largest equilibrium—no-adoption, full-adoption, nonviral-mix,

or viral-mix.

Proposition 3 (Characterization of equilibria for public goods). Let λ = 1 − v
c
∈ (0, 1), and

let λ be the unique solution in (1,∞] to λρ1 = 1− 2v
c+v(1+2ρ1)

. Then

1. (No-adoption) If λ < λ, the unique equilibrium is σ = 0.

2. (Nonviral Full-adoption) If λ < λ < 1, there is a no-adoption equilibrium σ = 0, a

nonviral-mixed equilibrium λσ = λ, and a nonviral full-adoption equilibrium σ = 1.

3. (Viral Full-adoption) If 1 < λ < λ, there is a no-adoption equilibrium σ = 0, a nonviral-

mixed equilibrium defined by λσ = λ and a viral full-adoption equilibrium σ = 1.

4. (Viral-mix) If λ > λ, there is a no-adoption equilibrium σ = 0, a nonviral-mixed equilib-

rium λσ = λ and a viral-mixed equilibrium defined by λσ = λ.

The proposition may be understood through the relationship between expected influence, the

threshold c
v
− 1 in the best response function and the strategic complementarity/substitability

of adoption in the sub/super critical regions. When the potential adopter network is sparse

(small λ or low levels of adoption σ) then expected influence is small (< c
v
− 1) and the best

response function is zero. Hence, there is always a no-adoption equilibrium for any λ and this
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is the unique equilibrium in sufficiently sparse networks (part 1). In the sub-critical region

(λ < 1) adoption is a strategic complement and as the network becomes more dense, expected

influence increases and for sufficiently high levels of adoption exceeds the threshold c
v
− 1 in

the best response function (adoption is a best response to sufficiently high adoption). This

introduces two more equilibria, a non-viral full adoption equilibrium and a non-viral mixed

equilibrium (part 2). As the density is increased further, the underlying network passes into the

super-critical region and expected influence remains large (diverging to ∞ around the critical

density). Initially, in the super-critical region, the 3 equilibria from part 2 continue to exist.

However, the full adoption equilibrium is now viral because the underlying network contains

a giant component (part 3). In the super-critical region, expected influence is decreasing in

adoption and density so for sufficiently dense networks and high adoption expected influence

falls below the threshold c
v
− 1 in the best response function. Once this occurs full adoption

can not be supported as an equilibrium (the best response to everyone else adopting is to not

adopt). Rather, the largest equilibrium becomes a viral-mixed strategy equilibrium where the

level of mixing maintains the expected influence at the threshold c
v
− 1 that permits mixing in

the best response function.

A consequence of the structure of equilibria for public goods is that one of two forces will always

limit a public good’s capacity to diffuse through a population. First, full adoption is only a

viral equilibrium if the network is not too dense (λ < λ̄), hence, although everyone is prepared

to adopt, any viral diffusion is limited by the fraction of people in the giant component which is

bounded away from 1 in the case λ < λ̄. Second, in more dense networks (λ > λ̄) it is strategic

considerations that limit the ability of a public good to diffuse. This occurs because in these

dense networks the presence of many alternative paths between individuals and the seed (global

effect of density) means there is a strong incentive to free-ride on others’ adoption. Hence, full

adoption can not be sustained as an equilibrium limiting the fraction of the population that is

willing to adopt and the connectedness of the potential adopter network.

We depict the relationship between influence and the best response in Figure 4. For exposition,

we fix v
c
= 0.5 in the figure. The top part of the figure shows expected influence in red and the

threshold 1− c
v
in blue, around which the best response changes. The bottom part of the figure

shows the best response correspondence in red, and the 45-degree line in black—the intersections

of the red and black lines are equilibria. We fix λ = 2.5 so that the figure shows the entire range

of possibilities for influence as a function of σ, the vertical orange line is the critical threshold

where λσ = 1, i.e. σ = 0.4. We also have λ = 0.5, and λ ≈ 1.97, and these can be obtained

by looking at the values of σ for which the expected influence (red) crosses the threshold 1− c
v

(blue). For example, the red and blue lines first intersect at σ = 0.2, so λσ = λ implies that

λ = 2.5× 0.2 = 0.5, as claimed. Finally, because influence is small on the tails and large in the
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middle, best responses are 0 for small or large σ, and 1 for intermediate values.

Figure 4: Expected influence and the best response correspondence for public goods. Agents
adopt only when expected influence is sufficiently large. Everyone adopts around the critical
threshold where λσ = 1. Maximal influence depends on λ, i.e. if λ < λ then expected influence
is always below the blue line λ and no one ever adopts.

To conclude this section, we translate cases 2 and 3 of Proposition 3 into a statement about

the size of diffusion. Observe that λ = 1 is a critical threshold such that no viral equilibria

exist when λ < 1 and viral equilibria always exist when λ > 1. A similar threshold exists for

public bads, so to unify our notation, we write λcrit
π , for the critical threshold around which

viral equilibria emerge (for π ∈ {g, b}). With this notation, λcrit
g = 1. Finally, recall that we

use C1,π(λ) to denote the fraction of agents in the largest component of the potential adopter

network for π ∈ {g, b} in the largest equilibrium. Corollary 1 is best understood by looking

at Figure 6.

Corollary 1. When π = g, there is a continuous phase transition in adoption under the largest
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equilibrium, that is,

lim
λ→λcrit

g
−

C1,g(λ)

n
= 0 = lim

λ→λcrit
g

+

C1,g(λ)

n
.

The upshot of Proposition 3 and Corollary 1 is that around the phase transition in the underlying

graph (i.e., λ ∈ (1 − ϵ, 1 + ϵ)), there is a parallel phase transition in equilibrium behavior: for

λ < 1, all equilibria are necessarily nonviral, while for λ > 1 there exists an equilibrium which

induces a giant component of potential adopters. Moreover, this transition admits a continuous

change in the size of the largest component in the potential adopter network with respect to λ.

We now contrast this with the case of the diffusion of public bads.

4.2 Public Bads

We now consider the public bad case π = b. Recall that when other players play according to

σ, expected utility from adoption is given by ED[ub(σ)] = −(v− c)− vIλ(σ). The best response

function again takes a particular simple form characterized by a threshold level of influence:

BR(σ) =


1, Iλ(σ) <

c
v
− 1

[0, 1], Iλ(σ) =
c
v
− 1

0, Iλ(σ) >
c
v
− 1.

(11)

Note that although the utility under public bads is simply the negative of the public good

utility and this inverts the best response function, it will not be the case that this results in the

public bad equilibria being an inversion of the public good equilibria for each λ. Recall that the

thresholds for λ, which we defined for public goods, are equal to

λ = 1− v

c
, λρ1 = 1− 2v

c+ v(1 + 2ρ1)

We describe the structure of equilibria in the following proposition.

Proposition 4 (Characterization of equilibria for public bads). Under the diffusion of public

bads:

1. (Non-Viral Full adoption) When λ < λ, the unique equilibrium is σ = 1.

2. (Nonviral-mix) When λ < λ < λ, there is a unique equilibrium determined by the nonviral

mixed strategy defined by λσ = λ.

3. (Viral Full adoption) When λ > λ, there is a viral full adoption equilibrium σ = 1 along
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with a nonviral-mixed equilibrium λσ = λ, and a viral-mixed equilibrium λσ = λ.

Similarly to earlier Proposition 4 may be understood through the relationship between expected

influence, the threshold c
v
− 1 in the best response function and the strategic complementar-

ity/substitutability of adoption in the sub/super critical regions. When the potential adopter

network is sparse (small λ or low levels of adoption σ) then expected influence is small (< c
v
−1)

and the best response function is to adopt. Hence, full adoption is a unique non-viral equilib-

rium in sufficiently sparse networks (part 1). In the sub-critical region (λ < 1) adoption is a

strategic substitute and as the network becomes more dense, expected influence increases such

that for sufficiently high levels of adoption it exceeds the threshold c
v
− 1 in the best response

function and full adoption is no longer sustainable as an equilibrium (non-adoption is a best

response to sufficiently high adoption). Rather, a non-viral mixed equilibrium emerges as the

unique equilibrium (part 2). As the density is increased further, the underlying network passes

into the super-critical region and expected influence remains large (diverging to ∞ around the

critical density). This means the best response is non-adoption to high levels of adoption (σ

close to 1) and the unique equilibrium remains the non-viral mixed strategy equilibrium. Hence,

unlike the public good case, as the underlying graph moves into the super-critical region no viral

equilibrium emerges. In the super-critical region, expected influence is decreasing in adoption

and density so for sufficiently dense networks (λ > λ̄) and high adoption expected influence falls

below the threshold c
v
− 1 in the best response function. Once this occurs both a viral mixed

and full adoption equilibria emerge (part 4).

A consequence of Proposition 4 is that viral equilibria exist for public bads if and only if the

network is sufficiently dense, that is, if and only if λ is large enough. In the case of public

bads, the global effect of density encourages adoption and sustains full adoption in sufficiently

dense networks. We interpret this as a kind of “mob mentality”—a situation in which a large

number of agents are willing to make a bad decision because none of them feel accountable for

influencing others to follow suit. However, once a viral full adoption equilibrium emerges it

remains in all more dense networks.

As with Figure 4, we depict the relationship between the expected influence and the best

response correspondence for public bads. Note that because the utility of public bads is the

negative of the utility of public goods, the plot is identical to Figure 4 but with the best response

correspondence inverted. We see that viral equilibria do not emerge smoothly alongside the

phase transition in the underlying graph because when λ is close to the critical threshold,

influence becomes too large for agents to be willing to adopt.

Proposition 4 implies that there is a discontinuous jump in adoption under the largest equilib-

rium when there is diffusion of a public bad. This is because a viral equilibrium emerges only
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Figure 5: Expected influence and the best response correspondence for public bads. Agents
adopt only when expected influence is sufficiently small. No one adopts around the critical
threshold where λσ = 1.

when the giant component is already well-established in the graph—that is, the critical thresh-

old is λcrit
b = λ > 1. In terms of component sizes, we have the following corollary analogous

to Corollary 1. Again, the Corollary is best understood by looking at Figure 6.

Corollary 2. When π = b, there is a discontinuous phase transition in adoption under the

largest equilibrium, that is,

lim
λ→λcrit

b
−

C1,b(λ)

n
= 0 < lim

λ→λcrit
b

+

C1,b(λ)

n
.

We now provide some comparative statics for our model.
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4.3 Comparative Statics

A key object of interest to us is the extent of diffusion in the potential adopter network in an

equilibrium, particularly, in the largest equilibrium. If there is a viral equilibrium σ, then the

size of a large cascade is given by σ(1− ρσ).

Consider the diffusion of public goods. By Proposition 3, we know that when 1 < λ < λ,

the unique viral equilibrium is the full-adoption equilibrium. It follows that the size of a large

cascade in this equilibrium is simply 1 − ρ1, which is strictly increasing in λ since extinction

becomes less likely as the network gets more connected. However, once λ > λ, full-adoption

is no longer an equilibrium and the unique equilibrium is the mixed strategy equilibrium σ∗

determined by

λσ∗ρσ∗ = 1− 2v

c+ v(1 + ρσ∗)
. (12)

We show in Appendix A (see the proof of Proposition 5) that ρσ∗ is constant for all λ > λ.

That is, as an equilibrium object, the fraction of potential adopters in the giant component

in the potential adopter network is constant whenever the underlying network is sufficiently

connected. As a consequence, the equilibrium strategy σ∗ must decrease to retain indifference

between adoption and non-adoption, and so the overall diffusion σ∗(1 − ρσ∗) is decreasing for

λ > λ.

Now, consider the diffusion of public bads. Proposition 4 tells us that when λ < λ, there are

no viral equilibria, while for λ > λ, there is a full-adoption equilibrium. Hence by the same

reasoning as in with public goods, the size of a large cascade is increasing in λ.

We plot size of a large cascade of public goods and public bads in the largest equilibrium

in Figure 6, and formalize the figure in Proposition 5.

Proposition 5. The dynamics of the size of a large cascade in the largest equilibrium is given

in the table below, where 0 indicates that there are no large cascades.

λ public goods public bads

λ < 1 0 0

1 < λ < λ strictly increasing 0

λ > λ strictly decreasing strictly increasing

Proposition 5 is our key comparative statics result. It illustrates a bystander effect for public

goods and a mob-rule effect for public bads when λ > λ. These effects can be understood

through the two effects of connectivity, the direct effect (holding agent’s strategies fixed) and

the indirect effect through the equilibrium adjustment of agent’s strategies. For both public
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Figure 6: Size of a Large Cascade: Public Goods vs. Public Bads. There is a discontinuous
jump in maximal diffusion under public bads at λ.

goods and public bads the direct effect increases the maximal size of the diffusion because

the giant component becomes larger in the potential adopter network holding agent’s adoption

decisions fixed. Also for both public goods and public bads connectivity reduces influence when

λ > λ. For public goods, an agent’s equilibrium probability of adoption decreases and this

effect dominates the former resulting in a smaller maximal diffusion. In contrast for public

bads, agent’s equilibrium strategy is to always adopt and this continues to be the case for

greater connectivity. Hence, the total effect is given by the direct effect leading the maximal

diffusion to increase. For completeness, we provide comparative statics for diffusion with respect

to v, c and their ratio v
c
below.

Proposition 6. When λ > 1, diffusion of public goods (bads) is weakly increasing (weakly

decreasing) in v, weakly decreasing (weakly increasing) in c and weakly increasing (weakly de-

creasing) in v/c.

Intuitively the only change that v and c can have on diffusion is through λ, which is a function

of both of these parameters. If λ < λ, a change in v and/or c can cause λ > λ, at which point

by Proposition 3 the structure of equilibrium (and hence diffusion) changes. We now proceed

to discuss the welfare implications of our comparative static results.

4.3.1 Welfare

Consider a planner who controls the size of the network (λ) and ex-ante knows that a behavior

is going to diffuse on the network, but does not know whether that behavior will be a public

good or a public bad. Let ζλ ∈ [0, 1] be the ex-ante expected diffusion in the largest equilibrium
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as a function of λ.28 Let v : {g, b}× [0, 1] → R denote the planner’s (indirect) utility function for

a given choice of λ, so that v = v(π, ζλ). Call a planner’s utility function in the public interest

if it is monotone increasing in ζλ when π = g, and monotone decreasing in ζλ when π = b. This

captures the idea that the diffusion of public goods is socially desirable while the diffusion of

public bads is not. Then, Proposition 5 implies that for any utility function that is in the public

interest, the socially optimal size of the network is achieved by choosing λ to be just below λ.

Proposition 7. A planner can achieve arbitrarily close to the maximum welfare under public

goods and public bads when λ− ϵ for ϵ > 0 sufficiently small.

Proposition 7 says that a planner wants to make the network large but not too large, lest they

risk the emergence of a viral equilibrium in public bads. A converse implication is that if a

network is large (λ > λ), then the diffusion of a public bad can be eliminated by lowering the

connectivity below the critical threshold λ. For example, suppose a society needs a certain

number of active voters to maintain a representative democracy, but that the network is suffi-

ciently connected so that non-engagement in the democratic process admits a viral equilibrium.

Then, the planner only has to decrease the connectivity of the network by an amount which

makes agents “accountable enough” for their action in order to eliminate the behavior entirely.

Finally, Proposition 7 implies that the losses on the adoption of public good are small relative

to the gains on adoption of public bads near λ, so a planner who is uncertain about the exact

threshold is better off “cutting more conservatively”. This of course should not be taken too

literally, but qualitatively the lesson remains.

In the next section, we will consider a number of extensions to the Poisson model.

5 Extensions

5.1 Arbitrary Degree Distributions

When it comes to real-world networks, there are many properties that the Binomial random

graph G(n, p) does not capture, for example “fat tails”.29 As such, it is natural to ask whether

our results can be extended beyond the specialised class of Poisson networks. The object of this

section is to answer this in the affirmative.

We can easily extend our model to a game on a network with an arbitrary degree distribution

constructed using the configuration model (Bollobás, 1980; Wormald, 1978). In this setting, so

28The analysis is virtually identical if the planner holds a probability distribution over the equilibrium which
will be played and puts nonzero probability on the largest equilibrium.

29See e.g., Jackson (2008).
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long as the degree distribution is sufficiently sparse, the graph is locally tree-like and there-

fore can be approximated using branching processes (we discuss this in more detail in Online

Appendix B).

An approach using generating functions works in this more general setting. Formally, define a

game with n agents as a three-tuple Γ(n) = (d(n),A, u). The vector d(n) = (d
(n)
1 , . . . ,d

(n)
n ) is the

degree sequence for the game and generalizes the binomial random graph of Section 2.30 The

actions and utility functions remain unchanged. We impose standard restrictions on the degree

sequence so that the limiting degree distribution, which we denote by D ≡ limn→∞ d(n), is well

behaved (in particular it must have a finite mean—see Online Appendix C for details).

The timing, payoffs and strategies in the more general model remain unchanged except that

expectations will be different because they depend on the degree distribution. Let

G0(z) =
∞∑
k=0

pkz
k

be the generating function for D = {pk}k≥0. Then, the generating function for D′ is given by

G1(z) =
G′

0(z)

G′
0(1)

,

where G′
0(1) = E(D). If all agents play the strategy σ, then the generating function for the

forward adoption degree distribution is

G1(1− σ + σz). (13)

It follows that the forward extinction probability ρσ for the generating function (13) is the

smallest solution in [0, 1] to the equation

ρσ = G1(1− σ + σρσ). (14)

Note that this implies

d

dz
G1(1− σ + σz)

∣∣
z=ρσ

= σG′
1(1− σ + σρσ). (15)

Equation (15) describes the expected offspring in the subcritical dual branching process with

offspring distribution D. In the Poisson model, the critical site percolation threshold was given

by λσcrit = 1, i.e., σcrit = λ−1. In general, the critical site percolation threshold for a graph with

30This can be viewed as a special case of Sadler’s single-type diffusion game.
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an arbitrary degree distribution is known to be

σcrit ≡ E[D]

E[D(D − 1)]
.

We now give an explicit formula for the expected influence function. We have the following

analogue of Lemma 1.

Lemma 2. The expected influence function ID : [0, 1] → R is given by

ID(σ) =


σG′

1(1)

1−σG′
1(1)

, σ < σcrit

2ρσ(Ĝ′
1(1)−1)

1−σG′
1(1−σ+σρσ)

, σ > σcrit
(16)

where ρσ is as in (14), and

Ĝ′
1(1) ≡

∑∞
k=1 k(1− ρkσ)

σk

k!
G

(k)
0 (1− σ)

1−G0(1− σ + σρσ)

is the expected number of neighbors who are potential adopters after updating due to viral infer-

ence. In particular, ID(σ) is continuous.

It turns out to be difficult in general to determine the behavior of (16) with respect to σ,

despite there being a “discrete duality principle” (Molloy and Reed, 1998) analogous to the

Poisson case.31 However, we can show that several cases behave exactly as the Poisson model.

Our results on the characterization of equilibria in Section 2 relied on a continuous parameter-

ization of the underlying density of the graph (λ). The reason for this is that λ is a sufficient

statistic for σcrit and a giant component exists in the graph if and only if σcrit < 1.

Many distributions of interest can be parameterized in a similar way, for example any degree

distribution that scales exponentially in the degree (e.g., a power law), or any family of mixed

Poisson distributions. As such, we now restrict our attention to one-parameter families of degree

distributions {Dθ}θ∈Θ, for which θ ∈ Θ ⊆ [0,∞) is a sufficient statistic for E[Dθ]
E[Dθ(Dθ−1)]

. We focus

on distributions for which E[Dθ]
E[Dθ(Dθ−1)]

is strictly decreasing in θ, with infθ∈Θ
E[Dθ]

E[Dθ(Dθ−1)]
< 1. This

guarantees that there exists a critical threshold θc such that a giant component exists in the

graph with degree distribution Dθ if and only if θ > θc.

In this setting, we can offer a characterization of equilibria in public goods and public bads that

31We can characterize exactly what happens in the subcritical regime and around the critical threshold, but
as the graph moves further into the supercritical regime we cannot say exactly what happens to influence for an
arbitrary degree distribution. We discuss this more in Section 5.3.

26



is entirely analogous to Propositions 3 and 4, if the following condition is satisfied.32

Condition 1. Let σ ∈ [0, 1] be any strategy.

(i) If σ is nonviral, then Iθ(σ) is strictly increasing in σ and strictly increasing in θ.

(ii) If σ is viral, then Iθ(σ) is strictly decreasing in σ and strictly decreasing in θ.

Condition 1 is identical to Proposition 2 but with λ replaced by the variable θ, which param-

eterizes the family of distributions. How restrictive is Condition 1? It is not difficult to show

that (i) always holds, and that (ii) holds around the phase transition (i.e., when σ ≈ σcrit).

Whether (ii) always holds away from the phase transition we do not know, however it does hold

in all of the examples we provide in the next section.33

We write θ, θ for the solutions to
c

v
− 1 = Iθ(1),

where θ < θ.34 For any family of distributions satisfying Condition 1, we have the following

analogue of Proposition 3.

Proposition 8 (Characterization of equilibria for public goods). Let {Dθ}θ∈Θ be a family of

degree distributions satisfying Condition 1. Then

1. (No-adoption) If θ < θ, there is a unique equilibrium σ = 0.

2. (Nonviral Full-adoption) If θ < θ < 1, there is a no-adoption equilibrium σ = 0, a nonviral-

mixed equilibrium σ = 1
G′

1(1)

(
1− v

c

)
, and a nonviral full-adoption equilibrium σ = 1.

3. (Viral Full-adoption) If 1 < θ < θ, there is a no-adoption equilibrium σ = 0, a nonviral-

mixed equilibrium σ = 1
G′

1(1)

(
1− v

c

)
and a viral full-adoption equilibrium σ = 1.

4. (Viral-mix) If θ > θ, there is a no-adoption equilibrium σ = 0, a nonviral-mixed equilibrium

σ = 1
G′

1(1)

(
1− v

c

)
, and a viral-mixed equilibrium defined by the largest solution to Iθ(σ) =

c
v
− 1.

The characterization of equilibria for public bads is analogous and therefore omitted here. It

is an immediate consequence of our analysis that the comparative statics and welfare analysis

provided in Section 4.3 also apply here. In particular our key insight in the Poisson model—that

a benevolent social planner wants to make the network “just large enough”—extends to graphs

32We can weaken this condition slightly as we discuss in the Online Appendix.
33Whether there exists a general class of distributions for which the condition holds is an open question.
34It is straightforward to show that θ always exists. Whether θ exists depends on c and v. If θ does not exist

then we set it equal to +∞.
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with an arbitrary degree distribution that can be parameterized in the way we have described.

5.2 Examples

5.2.1 Zipf Distribution

Consider a configuration model network with degree distribution

pk =
eαk

Φ(e−α, 1, k)

e−αk

k
, (17)

where Φ(z, s, k) is the Lerch transcendent function and k is the smallest degree that occurs with

nonzero probability. Equation (17) defines the so-called Zipf distribution. The Zipf distribution

exhibits a power-law of the form k−γ with γ = 1, and an exponential tail controlled by the

parameter α > 0.35 We focus on the case where k = 1 since this is analytically tractable. In

this case it’s straightforward to show that

G1(z) =
1− e−α

1− e−αz
.

Thus, the extinction probability ρσ = G1(1− σ + σρσ) is given by

ρσ =
1

θσ
, (18)

where we define θ = (eα − 1)−1. It follows that the critical threshold θcrit for the emergence of

the giant component is simply θ = 1 (or equivalently, α = ln(2)) so that an equilibrium is viral

iff θσ > 1.36

We can find an explicit expression for the expected influence in terms of θ. Expected influence

is given by (see Online Appendix F.2.1 for details)

Iθ(σ) =


θσ

1−θσ
, θσ < 1

2(θσ+1)
θσ ln(θσ)

− 2
θσ−1

, θσ > 1.

where we have written Iθ to emphasize that θ continuously parameterizes the family of Zipf

distributions just as λ does for the Poisson distribution. The parameterization θ also allows

us the convenience of being able to plot expected influence under the Zipf degree distribution

and under the Poisson degree distribution on the same scale, as we do in Figure 7. We take

35The Zipf distribution arises in a number of real-world settings, including the distribution of city sizes. See
e.g., Gabaix (1999), Ioannides and Overman (2003), and Arshad et al. (2018).

36The reason we define θ = (eα − 1)−1 is so that can write the results here in a similar way to the Poisson
model where virality depended on λσ.
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σ = 1 in the figure and plot with respect to θ (i.e., λ = θ for the Poisson distribution).

Crucially, Condition 1 holds for the Zipf distribution, and therefore Proposition 8 provides a

Figure 7: Zipf and Poisson Influence

full characterization of the equilibrium structure as a function of θ. The thresholds θ, θ are

determined by the equations

vθ

1− θ
+ v − c = 0 ⇐⇒ θ = 1− v

c
, (19)

v

(
2(θ + 1)

θ ln(θ)
− 2

θ − 1

)
+ v − c = 0, (20)

and the second equation can be solved numerically for specific values of v and c. E.g. when

c/v = 2, we have θ = 4.92 (and θ = 0.5). In our next example the expected influence can again

be solved for analytically, and we use numerical methods to verify Condition 1.

5.2.2 Exponential Distribution

Next, we consider a configuration model network with degree distribution

pk = Ae−αk, (21)

where A = eα−1. This is the discrete exponential distribution on k ∈ {1, 2 . . . }. It is convenient
to parameterize the distribution in terms of θ = E[{pk}k≥0] = (1 − e−α)−1. The generating

function for this distribution is given by

G0(z) =
z

θ − z(θ − 1)
,

29



and so

G1(z) =
1

[θ − z(θ − 1)]2
.

The extinction probability ρσ is therefore the solution of a cubic equation and is solvable by

radicals. It is easy to show that G′
1(1) = 2(θ − 1), and so subcritical influence (when ρσ = 1,)

is given by

Iθ(σ) =
4σ(θ − 1)

1− 2σ(θ − 1)
.

It’s clear that this expression is increasing in both θ and σ, and moreover that σ is viral if and

only if σ > 1
2(θ−1)

. We can also show that, quite remarkably, that

1

1−G0(1− σ + σρσ)

∞∑
k=1

k(1− ρkσ)
σk

k!
G

(k)
0 (1− σ) = 1 + σ(θ − 1).

We show in Online Appendix F.2.2 that the supercritical expected influence can be written in

closed form as a function of θ and σ,

Iθ(σ) =
2σ(θ − 1)

(θ − 1)2σ2 + 4(θ − 1)σ +
√
4 + σ(θ − 1)

√
σ(θ − 1)(σ(θ − 1)− 2)

.

Note that µ ≡ 2(θ− 1)σ is a sufficient statistic for describing Iθ(σ), and a strategy σ is viral iff

µ > 1. We can plot the function to see that it satisfies Condition 1. And so it follows that the

Figure 8: Influence for the Exponential Distribution

qualitative results of our analysis hold for an exponential degree distribution. Moreover, since

limµ→∞ I(µ) → 0,37 both thresholds θ and θ exist.

37The numerator has linear order in µ and the denominator quadratic order.
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5.2.3 Power Law

Many real-world networks follow a power-law distribution P(k) ∝ k−γ. When γ ≥ 3.5 there is

no giant component in the underlying graph. When γ ≤ 3, the critical percolation threshold is

0, because the second moment is infinite and therefore every strategy σ > 0 is viral. Moreover,

since the expected number of neighbors who are potential adopters depends on derivatives

G(k), and these diverge whenever k > 2, expected influence is not well defined for this class of

distributions. However, γ ∈ (3, 3.5), we can construct a quasi-measure of expected influence by

restricting calculations to the first two moments. This also allows us to build some intuition

about what happens as the limit as γ → 3+.

Consider a configuration model with degree distribution

pk = Ak−γ, (22)

where k ∈ [1,∞), and

A = ζ(γ)−1,

where ζ is the Riemann zeta function. It is known that

G1(z) =
Liγ−1(z)

zζ(γ − 1)
,

where Liγ is the polylogarithmic function with parameter γ. The extinction probability cannot

be solved for explicitly, but we can solve for it numerically for specific values of gamma. For

example, we can verify numerically that γ ≈ 3.5 is the threshold for the emergence of the giant

component in the underlying graph, so that a giant component exists if and only if γ < 3.5.

In Figure 9 we take γ = 3.4 and plot the influence function which we have computed numerically.

One can easily see that it exhibits the same qualitative characteristics as the previous two

distributions. In Figure 10 we see what happens to influence as γ → 3+, influence explodes

closer to σ = 0, and in the limit all equilibria become viral.

If the evolution of social media has approximately followed a power-law distribution with grad-

ually decreasing parameter γ, then our model provides a new explanation for why social media

environments have become increasingly hostile since their inception: network participants have

become more and more anonymous.
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Figure 9: Influence for the Power Law Dis-
tribution with γ = 3.4

Figure 10: Influence for the Power Law Dis-
tribution as γ ↓ 3

5.3 Discussion of the Assumptions

5.3.1 No Viral Inference

In our model, agents correctly update their beliefs about their expected degree upon exposure

when there is a giant component of potential adopters in the network (this is viral inference).

A natural question is whether our results change qualitatively if agents are naive in the sense

that they take the degree distribution to the be that of the underlying network regardless of

whether they are in the giant component. Since exposure informs an agent that at least one of

their links is in the giant component, it stands to reason that viral inference should decrease

the expected influence relative to naive beliefs. It is easily shown that expected influence in a

naive version of the Poisson model is given by

Iλ(σ) =
2λσρσ

1− λσρσ
,

so the −ρσ term in Lemma 1 is the “correction” due to viral inference.

In Figure 11, we plot the expected influence accounting for viral inference, relative to expected

influence with naive updating. We plot this only for λ > 1 since this is the only time viral

strategies exist, and we mark λ̃ < λ as the upper thresholds for emergence of viral mixed

equilibria under VI and no-VI. We see, as explained in our analysis above, that the expected

influence under naive updating lies strictly above the expected influence with viral inference:

agents believe they are too influential.

To conclude this section, we emphasize that the introduction of viral inference into the model

did not change the qualitative results of our characterization of equilibrium precisely because

the expected influence remained qualitatively the same as in the Poisson model. Our analysis

of graphs with an arbitrary degree distribution is in many ways analogous (see next section)

and we provide further examples illustrating the same point.
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Figure 11: Influence with (Iλ) and without (IN
λ ) viral inference

5.3.2 Knowledge of Degrees

A critical assumption that simplifies our analysis is that agents do not know their degree. In

the settings we are primarily interested in (e.g., participation in a protest), this is a reasonable

assumption. In other settings, it may be of interest to know how agents behave when they have

knowledge of their degree.

Suppose that agents know their degree. Then, strategies become functions of the degree, i.e.,

σ : N → [0, 1]. Since the graph is locally tree-like, higher degrees translate multiplicatively into

higher influence. Under degree distribution Dθ and strategy profile σ ≡ {σ(d)}d≥0, the expected

utility from provision of a public good by an agent of degree d is

ED[uπ(σ, d))] = (v + c) + v(d− 1)Iθ(σ).

It is straightforward to observe that equilibrium Bayesian strategies will take a threshold form.

In the case of a public good, agents adopt (not-adopt) with degrees strictly above (below) a

threshold degree kthres and may potentially mix at the threshold.38 Note that agents with d = 1

either never (always) adopt in the case of public goods (bads). Existence of equilibria can be

proved from Brouwer’s fixed point theorem, and we can write down an explicit form for the

expected influence Iθ(σ) in terms of generating functions. The exploding nature of influence

at the critical threshold λ = 1 suggests that public goods emerge continuously and public bads

emerge discontinuously in this setting as well.

38Of course vice-versa in the case of a public bad.
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6 Conclusion

We develop and analyze a model of privately provided public good and bad behaviors that

spread through populations via observational learning between social contacts. We show that

a key strategic consideration is, influence, the causal effect of an agent’s adoption decision on

the adoption decisions of the others in the network. Our analysis of influence identifies a non-

trivial effect of greater density on behavior via two competing effects. A direct positive effect

due to more people being able to observe an individual and a global negative effect as greater

connectivity leading people to be potentially influenced through multiple sources.

Our results establish that there are some robust properties in the way connectivity is related to

influence: at first it increases, then past a critical threshold of connectivity, influence decreases.

We also demonstrate that there is a stark difference between the phase transition in equilibrium

behavior for public goods compared to public bads. Public goods exhibit a continuous phase

transition in equilibrium adoption, while public bads exhibit a discontinuous transition in which

equilibrium adoptions emerge suddenly. We extend our model to graphs with an arbitrary

degree distribution and discuss how alternative assumptions such as knowledge of degree may

be incorporated into our setting.
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Appendix: Proofs of the results in the main text

6.1 Proof of Proposition 1

We wish to establish the existence of a symmetric perfect Bayesian Equilibrium. We first define

a best response correspondence:

BRπ(σ) =


1.1π=g, I(n)

λ (σ) > c
v
− 1

[0, 1], I(n)
λ (σ) = c

v
− 1

1.1π=b, I(n)
λ (σ) < c

v
− 1.

(23)

Appendix B shows that calculating I(n)
λ (σ) via Bayes rule results in function that is polynomial

and continuous in σ. Hence, σ,BRπ(σ) satisfy the conditions of Kakutani’s fixed point theorem

and there exists a strategy σ∗ = BRπ(σ∗). Our equilibrium is then this strategy and the

associated beliefs that result in I(n)
λ (σ∗). Off-equilibrium beliefs only arise at an information set

in an equilibrium where σ∗ = 0. In this case it is trivial to specify any belief where I(n)
λ (σ∗) = 0

in such an event.

6.2 Proof of Lemma 1

Proved as a special case of Lemma 2.

6.3 Proof of Proposition 2

By Lemma 1, expected influence when σ = 1 is given by

Iλ(1) =


λ

1−λ
, λ < 1

2
(

λρ1
1−λρ1

− ρ1

)
, λ > 1

In what follows we can always recover the same comparative static result for σ by replacing

λ with λσ (this is essentially invoking the duality result Theorem A1), so it is without loss of

generality to focus on σ = 1. We first consider nonviral strategies (λ < 1). In this case we have

Iλ(1) =
λ

1− λ
,

and
dIλ(1)

dλ
> 0 ⇐⇒ (1− λ) + λ > 0
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which is always true. We now consider viral strategies. The derivative of expected influence

(after dividing by 2 for ease of exposition) with respect to λ is given by

d

dλ

(
λρ1

1− λρ1
− ρ1

)
=

d(λρ1)
dλ

(1− λρ1)2
− dρ1

dλ
,

We begin by finding an explicit formula for d(λρ1)
dλ

. By (7) and the implicit function theorem we

have

dρ1
dλ

=

(
(ρ1 − 1) + λ

dρ1
dλ

)
eλ(ρ1−1) =

ρ1(ρ1 − 1)

1− λρ1
.

So,
d(λρ1)

dλ
= ρ1 −

λρ1(1− ρ1)

1− λρ1
= ρ1

[
1− λ(1− ρ1)

1− λρ1

]
.

It follows that expected influence is strictly decreasing (for λ > 1) iff

d(λρ1)

dλ
<

dρ1
dλ

(1− λρ1)
2

⇐⇒ ρ1

[
1− λ(1− ρ1)

1− λρ1

]
< −ρ1(1− ρ1)

1− λρ1
(1− λρ1)

2

⇐⇒ λ− 1

1− ρ1
> (1− λρ1)

2. (24)

From here the proof takes some work, we sketch the proof strategy here but leave the details to

the Online Appendix. First, note that (24) is true whenever λ > 2, since in this case we have

the chain of inequalities

(1− ρ1)(1− λρ1)
2 < 1 < λ− 1.

It remains to show that the inequality holds when 1 < λ < 2. To do this, we show that the

inequality (24) holds when λ = 1, and then show that both sides of the inequality are strictly

increasing for all λ > 1. We conclude the proof by showing that at λ = 2, the RHS of (24) is

still smaller than the smallest value of the LHS, so the inequality holds everywhere.

6.4 Proof of Proposition 3

First, σ = 0 is always a best response to itself since

v − c+ vIλ(0) = v − c < 0,

so agents strictly prefer not to adopt if they expect others to do the same. Hence, no adoption

(σ = 0) is always an equilibrium. It follows that full adoption (σ = 1) is an equilibrium if and

only if a mixed strategy equilibrium exists. A nonviral mixed strategy equilibrium exists if and
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only if there is a σ ∈ (0, 1) satisfying

v − c+ vIλ(σ) = 0 ⇐⇒ v − c+
vλσ

1− λσ

⇐⇒ λσ = 1− v

c
.

while a viral mixed strategy equilibrium exists if and only if there is a σ ∈ (0, 1) with ρσ < 1

satisfying

v − c+ vIλ(σ) = 0 ⇐⇒ v − c+
2vλσρσ
1− λσρσ

− 2vρσ = 0

⇐⇒ λσρσ = 1− 2v

c+ v(1 + ρσ)
.

It follows that in the subcritical regime (when λ < 1), we have a mixed strategy equilibrium if

and only if

1 > λ > 1− v

c
= λ.

Moreover, when λ < λ, we have λσ < 1− v
c
for all σ ∈ [0, 1] and so σ = 0 is the only equilibrium.

This proves the first two cases of Proposition 3. Next, in the supercritical regime (λ > 1), we

know from Proposition 2 that influence is strictly decreasing for any fixed σ. In particular, there

exists a smallest λ, which we call λ such that

λρ1 = 1− 2v

c+ v(1 + 2ρ1)
.

For any 1 < λ < λ, there is a full adoption equilibrium, and this is the unique viral equi-

librium (the nonviral mixed equilibrium and no adoption equilibrium are also still present).

However, for λ > λ, full adoption is no longer an equilibrium, since λρ1 < 1− 2v
c+v(1+2ρ1)

, and so

by Proposition 2 there is a unique viral equilibrium in mixed strategies determined by

λσ = λ.

This proves the final two cases of Proposition 3.

6.5 Proof of Corollary 1

The first equality holds because the LHS is necessarily 0 for all λ < 1, and the second equality

holds because Proposition 3 implies that a viral full-adoption equilibrium exists when λ is

arbitrarily close to (but larger than) 1. In particular, since the fraction of agents in the largest

component ofG(n, p) can be made arbitrarily small as λ → 1+, and in a full-adoption equilibrium

the potential adopter network is all of G(n, p), second equality follows.
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6.6 Proof of Corollary 2

The proof follows from Proposition 4 but is essentially identical to the proof of Corollary 1. We

omit the details.

6.7 Proof of Proposition 4

The details of the proof are virtually identical to the proof of Proposition 3. We provide a sketch

for completeness.

The key difference is that when λ is small, σ = 1 is the unique nonviral equilibrium, since

c− v − vIλ(1) > 0.

However when λ becomes sufficiently large (exceeds λ), full adoption is no longer an equilibrium

since agents expect to influence too many others. This leads to a mixed strategy nonviral

equilibrium and no adoption equilibrium when λ < λ < λ. Finally, when λ > λ, the giant

component is large enough such that expected influence is small, and full adoption becomes the

unique viral equilibrium.

6.8 Proof of Proposition 5 and Corollary 7

We first note that in the subcritical regime, all equilibria are nonviral and so their size is 0.

We proved in the text of Section 4.3 the case where λ < λ for public goods. We also fully

characterised the comparative statics for public bads. The only case that remains to prove is

when λ > λ for public goods. We now show that for public goods, the size of a large cascade in

the largest equilibrium is strictly decreasing when λ > λ.

Recall from (12) that

λσ∗ρσ∗ = 1− 2v

c+ v(1 + 2ρ∗σ)

in equilibrium, where

ρσ∗ = eλσ
∗(1−ρσ∗ ).

Hence since ρσ∗ is a function of λσ∗, and the equilibrium is unique, it follows that we must have

λσ∗ = λ, where

λρ1 = 1− 2v

c+ v(1 + 2ρ1)
.

In other words, in equilibrium, σ is chosen such that ρσ∗ is held constant. Hence when λ > λ,

an increase in λ keeps λσ∗ fixed, and therefore σ∗ must be strictly decreasing in λ.
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Finally, since ρ∗ is constant for all λ > λ, and diffusion is determined by σ∗(1 − ρσ∗), we have

that diffusion is strictly decreasing in λ in the largest equilibrium, as claimed. Proposition 7 is

immediate. The diffusion of public goods is maximized at λ = λ, while the diffusion of public

bads is 0 if and only if λ < λ.

6.9 Proof of Proposition 6

Suppose 1 < λ < λ and consider the diffusion of a public good. By Proposition 3, the largest

equilibrium is the full adoption equilibrium. Recall that a viral mixed strategy equilibrium

exists if and only if λ > λ, where

λρ1 = 1− v

c
.

The RHS of the above equation is decreasing in v, increasing in c and decreasing in v/c. In

particular, since λρ1 > 1 − v
c
when λ < λ, it follows that if the RHS increases, λ decreases.

In particular, λ is increasing in v, decreasing in c and increasing in v/c. Now, when λ < λ, a

change in the parameters will either:

1. Have no effect if it is still true that λ < λ, or

2. Cause the unique viral equilibrium to be a mixed strategy equilibrium if it becomes the

case that λ < λ.

In the second case, diffusion decreases (by Proposition 5), and the result follows. The analysis

is virtually identical for public bads except that the equilibrium can jump from no adoption to

full adoption rather than from full adoption to a viral mix.

6.10 Proof of Lemma 2

Suppose agents are playing the strategy σ. Let F1,σ(z) be the generating function for the distri-

bution over finite “forward component sizes” in the potential adopter network (not necessarily

the whole network) from following a randomly chosen edge. Then

F1,σ(z) = zG1[1− σ + σF1,σ(z)], (25)

from which it follows that

F1,σ(1) = G1[1− σ + σF1,σ(1)] = ρσ.
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We can find the expected finite forward component size in the potential adopter network by

taking the derivative of (25) at 1 and substituting in the expression for F1,σ(1). I.e.

F ′
1,σ(1) = G1[1− σ + σF1,σ(1)] + σF ′

1,σ(1)G
′
1[1− σ + F1,σ(1)] =

ρσ
1− σG′

1(1− σ + σρσ)
. (26)

Since, in the limit, the graph is locally tree-like, each neighbor of an agent can be considered

as an independent cluster of potential influence (we discuss this in more depth in Appendix B).

If σ is nonviral, then ρσ = 1, and exposure gives no information about the degree distribution.

Hence the total expected influence of an agent i is F ′
1,σ(1) multiplied by i’s expected number of

potential-adopter neighbors: E[Ai] = σG′
1(1). That is,

Iθ(σ) =
1

1− σG′
1(1)

× E[Ai] =
σG′

1(1)

1− σG′
1(1)

.

When σ is viral, there is a giant component of potential adopters. Here there are two cases

we need to consider. The first is that the seed is in the giant forward component (which

happens with probability → 1 in the limit of large networks). In this case, expected influence

is the expected finite forward component through each neighbor; this is simply F ′
1,σ(1) for each

neighbor. The second case is that the seed is in a finite forward component, in which case an

agent is pivotal for the information reaching the giant component. We return to this second

case at the end, for now we calculate the expected degree conditional on exposure.

Let Si denote the event that at least one neighbor of a randomly chosen vertex i is in the giant

component of potential adopters. Let Ai denote the number of neighbors of i who are potential

adopters. Let di denote i’s degree. The quantity we need to find is E[Ai | Si]. By the law of

total expectation,

E[Ai | Si] =
∞∑

di=1

E[Ai | Si, di]P(di | Si).

By Sadler (2020, Theorem 3),

P(Ai = k | Si, di) =
1− ρkσ

1− (1− σ + σρσ)di
P(Bin(d, σ) = k).

So we have

E[Ai | Si, di] =

di∑
k=1

k

(
1− ρkσ

1− (1− σ + σρσ)di
P(Bin(di, σ) = k)

)
.
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Now notice that (dropping the i subscripts)

E[A | S, d]P(d | S) =

[
d∑

k=1

k

(
1− ρkσ

1− (1− σ + σρσ)d
P(Bin(d, σ) = k)

)][
pd
(
1− (1− σ + σρσ)

d
)

1−
∑

k≥0 pk(1− σ + σρσ)k
.

]

=
1

1−G0(1− σ + σρσ)

d∑
k=1

kpd
(
1− ρkσ

)
P(Bin(d, σ) = k).

By Tonelli’s theorem, the double sum
∑∞

d=1

∑n
k=1 can instead be computed as

∞∑
k=1

∞∑
d=k

kpd
(
1− ρkσ

)
P(Bin(d, σ) = k) =

∞∑
k=1

k(1− ρkσ)
∞∑
d=k

pdP(Bin(d, σ) = k)

=
∞∑
k=1

k(1− ρkσ)
σk

k!
G

(k)
0 (1− σ)

Subtracting 1 from the above expression (for the link along which exposure occurred) gives us

the numerator for expected influence under viral strategies. Hence if the seed is in the giant

forward component then expected influence is

F ′
1,σ(1)E[Ai | Si] =

ρσ
1− σG′

1(1− σ + σρσ

(∑∞
k=1 k(1− ρkσ)

σk

k!
G

(k)
0 (1− σ)

1−G0(1− σ + σρσ)
− 1

)
.

Finally, returning to the “second case” mentioned earlier in the proof, it follows from the above

analysis that the seed is in a finite forward component with probability
F ′
1,σ(1)E[Ai|Si]

cn
, where

cn is the size of the giant component. But in this case, influence is equal to the entire giant

component, i.e. cn, so on net the expected influence is simply F ′
1,σ(1)E[Ai | Si]. Adding this

to expected influence gives us a factor of 2, which proves Lemma 2. We show the explicit case

of Lemma 1 in the Online Appendix.
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Online Appendix

A Poisson Model

A.1 Branching Processes and Duality

There are several texts one can consult for a detailed treatment of branching processes, e.g. Van der

Hofstad (2023a); Athreya and Ney (1972). The most important results on Galton-Watson

branching processes are also outlined in Appendix A of Sadler (2020). As such, we confine our-

selves here to presenting results on the duality properties of supercritical branching processes,

and for this we follow Van der Hofstad (2023a).

Let D ≡ {pk}k≥0 be a probability distribution over the nonnegative integers, and suppose that

D is the offspring distribution of a branching process. The branching process is said to be

subcritical if E[D] < 1, and supercritical if E[D] > 1. This is because the extinction probability,

ρ i.e. the probability that the branching process eventually dies out, is 1 if E[D] < 1, and

strictly less than 1 if E[D] > 1.

Let GD(z) =
∑

k pkz
k denote the generating function for the distribution D. Then the extinction

probability ρ is defined by the smallest solution in [0, 1] to the equation ρ = GD(ρ).

Call the distributions {pk}k≥0 and {p′

k}k≥0 a conjugate pair if

p′k = ρk−1pk.

It is easy to check that {p′k}k≥0 is a probability distribution, since

∞∑
k=0

p′k = ρ−1

∞∑
k=0

pkρ
k

= ρ−1GD(ρ)

= ρ−1ρ = 1.

It turns out that the distribution for a supercritical branching process conditioned on extinction,

is precisely equal to the conjugate distribution defined above. This is stated formally in the

following theorem.

Theorem A1 (Van der Hofstad (2023a, Theorem 3.7)). Let {pk}k≥0 and {p′k}k≥0 be a conjugate

pair of offspring distributions. The branching process with distribution {pk}k≥0 conditioned on
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extinction has the same distribution as the branching process with offspring distribution {p′k}k≥0.

The proof follows directly from Bayes’ rule. Theorem A1 takes on a particularly nice form for

Poisson branching processes. Let {pk}k≥0 be a Poisson distribution with mean λ. Then the

generating function is given by

G0(z) = eλ(z−1),

and therefore the extinction probability ρ = ρλ satisfies

ρλ = eλ(ρλ−1). (A1)

If λ > 1, then a branching process with offspring distribution {pk}k≥0 is supercritical, and

therefore by Theorem A1 the distribution conditional on extinction is

p′k = ρk−1
λ pk =

ρkλ
eλ(ρλ−1)

· e
−λλk

k!
=

e−λρλ(λρλ)
k

k!
,

where the second equality follows from Eqn. (A1). But this distribution is again Poisson, with

mean

µλ ≡ λρλ < 1.

It follows that a branching process with offspring distribution Po(λ) (where λ > 1) conditioned

on extinction, has the same distribution as a branching process with offspring distribution

Po(λρλ). We call a branching process with offspring distribution Po(λρλ) the subcritical dual of

the supercritical branching process with offspring distribution Po(λ).

Once we introduce percolation, the branching process has offspring distribution Po(λσ), and so

the subcritical dual has offspring distribution Po(λσρσ), where we omit the dependence of ρ on

λ for readability. Finally, although we formally prove Section 6.2, this duality gives us another

way of seeing why the influence function takes on the specific form that it does. In particular

consider the following theorem.

Theorem A2 (Van der Hofstad (2023a, Theorem 3.5)). Let T denote the total offspring of a

branching process with i.i.d. offspring X, having mean offspring µ < 1, then

E[T ] =
1

1− µ
.

It follows from Theorem A2 that the expected offspring of the subcritical dual branching process

in our setting is

E[T ] =
1

1− λσρσ
.
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This is remarkably close to our expression for the expected influence, in fact the expected

influence is 2λσρσE[T ]− 2ρσ. The reason for the additional factor λσρσ is that when we choose

an edge at random in the network and follow it to a vertex incident with it, the vertex has, in

expectation, λσρσ “forward” neighbors who are potential adopters. So the expected influence is

just E[T ] for each of these neighbors, minus an adjustment factor ρσ due to viral inference. The

“2” comes from the fact that we have to count both the cases where the seed is in the “giant

forward component” or the “finite forward component” (see Section 6.10 for more details).

The reason we can obtain this result via branching processes is that the Erdös-Renyi random

graph is intimately related to a branching process with Poisson offspring distribution. We

omit the details here, but one can show that G(n, λ/n) converges “locally in probability” to a

branching process with offspring distribution Po(λ) (see Van der Hofstad, 2023b, Theorem 2.18).

In other words, our analysis of G(n, λ/n) in terms of Poisson branching processes can be made

precise. We take this approach in the following proof, but present it in a slightly more flexible

way that also works for graphs with an arbitrary degree distribution.

B Influence

This section provides a rigorous foundation for our definition of influence in finite graphs and

its behavior in the limit as n → ∞. The following explanation can be easily adapted to a graph

with an arbitrary degree sequence, and even any distribution over values v. In our case, the

degree sequence is Poisson and the distribution over values is a point mass.

Fix a graph G = (V,E) on V = {1, 2, . . . , n} vertices with edge set E, and fix a strategy σ

which induces a subnetwork of potential adopters Ga = (Va, Ea) ⊆ G. Let s ∈ {1, 2, . . . , n} be

the seed agent, and for each vertex j define PGa(j, s) to be the set of all paths in the potential

adopter network Ga from j to s. That is,

PGa(j, s) = {v0v1, . . . , vk : k ∈ N, vivi+1 ∈ Ea for all i, and vi are distinct}.

Write Ga−{i} for the graph obtained after removing from Ga the vertex i and any edges incident

with it. Write Ga + {i} for the graph obtained by adding i ∈ V to the subgraph Ga ⊆ G. If

i ∈ Va, then Ga + {i} = Ga. The influence Inf(i) = Inf{G,Ga,s}(i) of i in G is defined by1

Inf(i) = {j ∈ V : PGa+{i}(j, s) ̸= ∅, and PGa−{i}(j, s) = ∅}.
1Influence is defined for any vertex in G and not just in Ga, because agents outside the potential adopter

network still consider what their influence would be if they were to join the potential adopter network.
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That is, the set of all agents j ∈ Va for whom every path to s contains i, if i were in the potential

adopter network. Now, if Inf(i) ̸= ∅, then at least one of i’s neighbors is in Inf(i). To see this,

note that if every j ∈ Inf(i) is not a neighbor of i in Ga + {i}, then any path from j to s must

pass through at least one of i’s neighbors. If we let P = v0v1, . . . , vk ∈ P(j, s) with v0 = j and

vk = s, and k > 2, (by the assumption that j is not a neighbor of i) then there is some ℓ < k

with vℓ = i, and where vℓ−1 ̸= j is a neighbor of i. But if vℓ−1 /∈ Inf(i), then there exists some

other path from vℓ−1 to s not passing through i. Call this path Pℓ. Then Pvℓ−1Pℓ
2 is a path

from j to s not containing i, a contradiction of the fact that j ∈ Inf(i).

This gives us a useful way to reformulate i’s influence. We have j ∈ Inf(i), if and only if i is a

cutvertex separating a component of agents containing j from a component of agents containing

s. This is useful because if i’s influence is nonempty, then as we have seen, i has at least one

neighbor over whom he has influence, and every agent over which i has influence is connected

to one of i’s neighbors. Hence for any j ∈ Inf(i), we know that j is in a component with at least

one of i’s neighbors. If follows that if i is connected to the seed, then i’s influence is the sum

over the component sizes in Ga−{i} of each of his neighbors over whom he has influence (being

careful not to double count if two of i’s neighbors are in the same component). Formally, letting

CG(j) denote the component in G containing j, and letting NG(i) denote the set of neighbors if

i in G, we have

Inf(i) =


⋃

j : s/∈CGa−{i}(j)
CGa−{i}(j)(s), s ∈ CGa+{i}(i),

∅, s /∈ CGa+{i}(i).
(B2)

In words, the influence set of i is the union over all components containing i’s neighbors who

are not on some alternate path back to the seed.

We claim that for any fixed n, the expected size of the influence Inf(i) of any agent i is a

polynomial in the adoption probability σ. For any fixed n, if an agent knew the structure of

the graph G and the potential adopter subnetwork Ga, he could calculate his influence. In our

model, G and Ga are both random. This is because nature draws a graph G = G(n, p) rather

than the graph being fixed. Note that the realization of G does not depend at all on strategies.

Fixing a realization of the graph G, the potential adopter network is determined by n indepen-

dent Bernoulli experiments, each with success probability σ, and so (as claimed) the probability

that any particular potential adopter subgraph is realised is determined by a polynomial in σ.

Since agents are aware upon exposure that at least one of their neighbors has adopted, they

condition the probability of realising any particular potential adopter network on the knowl-

2This notation is standard in Diestel (2000).
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edge that at least one of their neighbors is a potential adopter. It follows that the conditional

probability is a ratio of positive polynomials in the adoption probabilities σ.

Finally, the seed agent is chosen uniformly at random. Hence for a seed s, a realised graph G

and a potential adopter subnetwork Ga, an agent i can calculate their influence. That is, the

expected size of the influence of i is well defined given G and Ga. But in our model, strategies

are conditional upon exposure, i.e. i has the opportunity to act only if they are in the same

component as s. Agents don’t know the time period t at which they are exposed, nor do they

know which of their neighbors exposed them, as such, upon exposure they condition on the

fact that they are connected to the seed in the potential adopter network, and on nothing else.

So the quantity we are really interested in is the expected influence conditional on the event

Si ≡ {s ∈ CGa+{i}(i)}. Note that since Inf(i) = ∅ on the complement of Si, the expected

influence Eσ[|Inf(i)|] is identical to Eσ[|Inf(i)|1Si
]. Hence for any agent i, ex-ante the expected

size of i’s influence under the strategy σ ∈ [0, 1] and conditional on Si is

Eσ[|Inf(i)| | Si] =
Eσ[|Inf(i)|1Si

]

P(Si)

=
Eσ[|Inf(i)|]

P(Si)

=
1

P(Si)

∑
G

∑
Ga

∑
s

|InfGa,G,s(i)|P(G)P(Ga | G, σ)P(s | Ga, G, σ), (B3)

where P(s | Ga, G, σ) = 1
n−1

is fixed and independent of the choice of G and s, while each

P(Ga | G, σ) is polynomial in σ, and each P(G) is a number in [0, 1] determined by the degree

distribution. We have written InfG,Ga,s to emphasize that the influence of i depends on the

graph G, the potential adopter network Ga ⊆ G and the seed s.

The most important consequence of this is that the expected influence upon exposure is a

continuous function of σ, since it is a ratio of polynomials in σ with a denominator that has no

roots in [0, 1] (except at σ = 0 which is trivial). In the limit as n → ∞ we have to take some

care because expected influence can become infinite and continuity in this context just means

that around some “critical threshold” we can make influence arbitrarily large.

We now take a closer look at what happens as n → ∞. We have proved that i’s influence can

be obtained by taking the union over the components containing i’s “forward neighbors”, that

is, those neighbors who are not in the same forward component as the seed. We claim that as

n → ∞, in the absence of a giant component every agent i of degree d has influence over d− 1

of his neighbors with probability 1− o(1).

To prove the above claim, we use a Lemma from from Bollobás & Riordan (2015) which es-
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tablishes that the configuration model produces a locally tree-like graph. Given a graph G, let

G≤t(v) denote the subgraph of G induced by the vertices within distance t of v; that is, up to

the “t-th neighbours” of v. Let T = TD be a branching process (or a “random rooted tree”) on

X1, X2, . . . with Xi ∼ D′, the forward degree distribution (independently for all i). As with G,

let TD|t be the subtree of TD induced by the vertices within distance t of the root (that is, the

first t generations of the process).

Lemma B3 (Bollobás and Riordan (2015)). Let v be a vertex of G = G⋆
d chosen uniformly at

random. Then we may couple the random graphs G≤t(v) and TD|t so that they are isomorphic

as rooted graphs with probability 1− o(1) as n → ∞.

This gives us the following corollary.

Corollary B3. Let v be a vertex of G = G⋆
d chosen uniformly at random. If t ≥ 1 is a constant,

then w.h.p. the neighbourhood G≤t(v) of v in G is a tree.

Suppose that the graph has no giant component of potential adopters, so that all component sizes

are finite. Consider choosing a vertex i and random, and suppose i has degree d. Corollary B3

implies that if i is exposed then with probability 1 − o(1), i is a cut vertex separating d − 1

components– one for each of his neighbors– from the component containing s. This is because by

assumption all of i’s neighbors are contained in finite components, and so for any ϵ > 0 we can

choose a finite size t such that the fraction of vertices in Inf(i) which are also contained in the tree

G≤t(v) (minus the component containing i and s) is 1− ϵ. It follows that i’s expected influence

is simply the expected “forward component size” his neighbors who are potential adopters.

When agents do not know their own degrees, they compute the expected influence through each

of their forward neighbors. In expectation there are σE[D′] = σλ forward neighbors who are

potential adopters. Since each neighbor is (w.h.p.) contained in a separate forward component,

i’s expected influence under our simplifying assumption is σλJλ(σ) where we define Jλ(σ) to

be the number of agents contained in the component of one of i’s potential adopting neighbors,

under the strategy σ. Equivalently, we can define Jλ(σ) as the expected influence of an agent

with one forward neighbor in the potential adopter network. In the limit as n → ∞ we have an

explicit expression for the component sizes and forward component sizes (See Callaway et al.

(2000) and Newman et al. (2001)), namely

Iλ(σ) = λσJ (σ) =
λσ

1− λσ
. (B4)

It remains to consider what happens when there are components of infinite size in the potential

adopter network. We would like do define influence analogously to the above– as the expected

“forward component size”. If the seed is connected to the giant component only on paths passing
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through i, then i’s influence is infinite—it is the entire giant component. On the other hand,

if the seed is connected to the giant component on other paths not passing through i, then i’s

influence is the finite forward component size. This is because all agents not on finite forward

components will be exposed independently of the action of i (a different chain of people from

the giant component will reach them). Hence when the seed is in the giant forward component,

the influence of an agent i of degree d is, in expectation, their number of potential adopting

neighbors multiplied by the expected “forward component size” through each of these neighbors,

conditional on those components being finite (i.e. the paths dying out). This turns out to be

precisely the expectation of the generating function F1,σ(z), which we define in Section 6.10 and

we show its expectation to be

F ′
1,σ(1) =

ρσ
1−G′

1,σ(1− σ + σρσ)
, (B5)

where ρσ is the forward extinction probability. When ρσ = 1, (B5) coincides with J (σ)

from (B4). However, due to viral inference the expected number of potential adopting neighbors

is different when strategies are viral. Let E[Ai | Si] be the expected degree of a randomly chosen

agent in the giant component. Let F be the event that the seed is in a finite forward component,

and let cn be the size of the giant component. Then total expected influence for large n under

viral strategies is

Iθ(σ) = F ′
1,σ(1)E[Ai | Si] (1− P(F)) + cnP(F)

= F ′
1,σ(1)E[Ai | Si]

(
1−

F ′
1,σ(1)E[Ai | Si]

cn

)
+ cn

F ′
1,σ(1)E[Ai | Si]

cn

= F ′
1,σ(1)E[Ai | Si]

(
1− o( 1

n
)
)
+ F ′

1,σ(1)E[Ai | Si]

→ 2F ′
1,σ(1)E[Ai | Si],

as n → ∞. As we show in Section 6.10, the correct expression for expected influence is

Iθ(σ) = 2F ′
1,σ(1)

(
1

1−G0(1− σ + σρσ)

∞∑
k=1

k(1− ρkσ)
σk

k!
G

(k)
0 (1− σ)− 1

)
.

This concludes our formal discussion of the notion of influence.
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C The Degree Distribution

In order for limn→∞ d(n) to be well-behaved, we assume—as is standard—that there exists a

distribution D with finite expectation and with p.m.f. {pk}k∈N, such that for each k ∈ N,

lim
n→∞

nk(d
(n))

n
= pk, and (C6)

lim
n→∞

m(d(n))

n
=

E(D)

2
. (C7)

The function nk(d
(n)) is the number of vertices of degree k in d(n), while m(d(n)) is the number

of edges in the graph with degree sequence d(n).

Under these conditions, all of our quantities of interest (the extinction probability, size of the

largest component, etc.) are analytic except at the critical threshold (see Janson, 2009, Theorem

3.11 for details). This justifies (among other things) our implicit differentiation of ρσ in the proof

of Proposition 2.

D Equilibrium

Although we analyze equilibria in the “limit-game”, our pure strategy equilibria exist in any

game with sufficiently large n. Our mixed strategy equilibria are ϵ-equilibrium for sufficiently

large n. To see this, we focus on the case where a public good diffuses on the network. Note

first that for all n, we have Iλ(0) = 0, so consider the case where σ = 1 is a strict pure strategy

equilibrium in the limit-game.

Since σ = 1 is a strict pure strategy equilibrium, it must be that Iλ(1) > c
v
− 1. But since

I(n)
λ (σ) converges to Iλ(σ) as n → ∞, there must be some N for which I(n)

λ (1) > c
v
− 1 for all

n ≥ N . Hence σ = 1 is an equilibrium in all sufficiently large games.

Finally, suppose σ ∈ (0, 1) is a nonviral mixed strategy equilibrium of the limit-game. Then

Iλ(σ) =
c
v
− 1. Now fix ϵ > 0. As above, for sufficiently large n we must have that I(n)

λ (σ+ ϵ) >
c
v
− 1 and I(n)

λ (σ − ϵ) < c
v
− 1 (alternatively, for viral equilibria the inequalities are reversed).

Hence by continuity of I(n)
λ (σ) (established in Appendix B), there is a mixed strategy equilibrium

in (σ − ϵ, σ + ϵ), i.e., within distance ϵ of σ.
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E Proofs: Additional Details

E.1 Lemma 1 as a Corollary of Lemma 2

In general, the expression given in Lemma 2 for the expected number of potential adopting

neighbors the simplest we can give because we don’t know anything specific aboutG
(k)
0 . However,

for the Poisson distribution we have

G
(k)
0 (z) = λkG0(z).

Plugging this into the above expression gives

∞∑
k=1

k(1− ρkσ)
σk

k!
G

(d)
0 (1− σ) = G0(1− σ)

∞∑
k=1

(
σk

(k − 1)!
− (σρσ)

k

(k − 1)!

)
λk

= G0(1− σ)
(
λσeλσ − λσρσe

λσρσ
)

But now recall that G0(z) = eλ(z−1), so

λσG0(1− σ)
(
eλσ − ρσe

λσ
)
= λσe−λ(1−σ−1)

(
eλσ − ρσe

λσ
)

= λσ
(
1− ρσe

λσ(ρσ−1)
)

= λσ(1− ρ2σ)

where the last equality comes from the fact that ρσ = eλσ(ρσ−1). So for the Poisson distribution

we arrive at

E[A | S, d] = λσ (1− ρ2σ)

1−G0(1− σ + σρσ)
,

and finally since the denominator is equal to 1 − ρσ we get E[A | S, d] = λσ(1 + ρσ), which

proves Lemma 1. In general if σ = 1, the expression can be simplified to

E[A | S] = 1

1−G0(ρ1)

∞∑
k=1

k(1− ρk1)pk =
G′

0(1)(1− ρ1)(1 + ρ1)

1−G0(ρ1)
.

E.2 Remainder of Proof of Proposition 2

Consider the limit

L ≡ lim
λ→1+

λ− 1

1− ρ1
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Since the numerator and denominator both approach 0, by L’Hôpital’s rule, we have

L = lim
λ→1+

1

−dρ1
dλ

=
1− λρ1

ρ1(1− ρ1)
.

A second application of L’Hôpital’s rule gives

L = lim
λ→1+

−ρ1 − λdρ1
dλ

dρ1
dλ

(1− 2ρ1)
=

(
lim
λ→1+

1

−dρ1
dλ

)(
lim
λ→1+

ρ1
1− 2ρ1

)
+

(
lim
λ→1+

−λ

1− 2ρ1

)
L = L(−1) + 1

=⇒ L =
1

2
.

On the other hand, we have

lim
λ→1+

λρ1 = 1 =⇒ lim
λ→1+

(1− λρ1)
2 = 0 <

1

2
= L.

This shows that (24) holds as λ → 1+. Next we show that both sides of (24) are strictly

increasing. The RHS is immediate, since

d

dλ
(1− λρ1)

2 = −2
d(λρ1)

dλ︸ ︷︷ ︸
<0

(1− λρ1)︸ ︷︷ ︸
>0

> 0.

For the LHS, we have
d

dλ

(
λ− 1

1− ρ1

)
=

1− ρ1 +
dρ1
dλ

(λ− 1)

(1− ρ1)2
,

which is positive iff

1− ρ1 + (λ− 1)

(
ρ1(ρ1 − 1)

1− λρ1

)
> 0

⇐⇒ 1 >
(λ− 1)ρ1
1− λρ1

⇐⇒ ρ1 <
1

2λ− 1
.

To prove the last inequality above it suffices to show that

e
λ
(

1
2λ−1

−1
)
≤ 1

2λ− 1
, (E8)
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since this would imply that the smallest solution in [0, 1] to the equation ρ1 = eλ(ρ1−1) must be

at some ρ1 <
1

2λ−1
. By using the fact that

λ

(
1

2λ− 1
− 1

)
=

2λ(1− λ)

2λ− 1
=

1

2

[
1− (2λ− 1)2

2λ− 1

]
=

1

2

[
1

2λ− 1
− (2λ− 1)

]
=

1

2(2λ− 1)
+

1

2
− λ,

so we can rewrite (E8) as

e−λ
(
e

1
2(2λ−1)

+ 1
2 (2λ− 1)− eλ

)
≤ 0.

At λ = 1 the LHS of the above inequality is equal to 0, so it suffices to prove that the function

f(λ) ≡ e
1

2(2λ−1)
+ 1

2 (2λ− 1)− eλ

is strictly increasing. To show this, first note that for λ > 1,

2(λ− 1)2 > 0 =⇒ (2λ− 1)λ− 3λ+ 2 > 0 =⇒ λ >
3λ+ 2

2λ− 1
.

Next recall that log(1 + x) < x for all x ̸= 0, so we have

λ

2λ− 1
+ log

(
1 +

(
1− 1

2λ− 1

))
<

λ

2λ− 1
+ 1− 1

2λ− 1
=

3λ− 2

2λ− 1
< λ.

Exponentiating both sides gives

e
λ

2λ−1
4λ− 3

2λ− 1
< eλ.

Finally, some algebraic manipulation shows that

df

dλ
= eλ − e

λ
2λ−1

4λ− 3

2λ− 1
.

So we see that df
dλ

> 0 iff eλ > e
λ

2λ−1 4λ−3
2λ−1

, which we have proved! This proves (E8) which in turn

proves that ρ1 <
1

2λ−1
. Hence

d

dλ

(
λ− 1

1− ρ1

)
> 0
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for all λ > 1. To summarise, we have thus far shown that

λ− 1

1− ρ1
> (1− λρ1)

2 for all λ ≥ 2 (E9)

lim
λ→1+

(
λ− 1

1− ρ1

)
=

1

2
> 0 = lim

λ→1+
(1− λρ1)

2, (E10)

d

dλ

(
λ− 1

1− ρ1

)
> 0 (E11)

d

dλ
(1− λρ1)

2 > 0. (E12)

To complete the proof, we show that (1− λρ1)
2|λ=2<

1
2
, which shows that (E9) also holds when

1 < λ < 2. It suffices to prove that at λ = 2,

ρ1 ≥
√
2− 1

2
√
2

,

since this would imply

(1− 2ρ1)
2 ≤

(
1−

√
2− 1√
2

,

)
=

1

2
.

But for this it suffices to show that

e
2

(√
2−1
2
√
2

−1

)
≥

√
2− 1

2
√
2

,

since by definition of ρ1 this means ρ1 ≥
√
2−1
2
√
2
. It is easily verified that

e
2

(√
2−1
2
√
2

−1

)
≈ 0.181 > 0.146 ≈

√
2− 1

2
√
2

,

and this proves that (E9) for all λ > 1, which in turn proves that

dIλ(1)

dλ
< 0

for all λ > 1, as desired. It is also worth noting that as λ → ∞, the above argument shows

λρ1 → 0 and therefore Iλ(σ) → 0 for any fixed σ.

E.3 Note on Proposition 5

We used the notation C1,π(λ)

n
in the text to refer to the size of the largest component in the

potential adopter network in the largest equilibrium. This is different to the ex-ante expected
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size of diffusion, but the comparative statics are the same for both. In particular,

C1,π(λ)

n
= σ∗(1− ρσ∗),

where σ∗ is the largest equilibrium under π and given λ, while the ex-ante expected size of

diffusion is
C1,π(λ)

n
× P(seed triggers a large cascade) = σ∗(1− ρσ∗)2,

so we see that the relevant comparative statics are identical from the ex-ante perspective.

F Extensions

F.1 A Note on Condition 1

Condition 1 can be weakened to the following.

Condition 2. Let σ ∈ [0, 1] be any strategy.

(i) If σ is viral, then Iθ(σ) is strictly decreasing in σ.

(ii) Iθ(1) is strictly decreasing in θ for all θ > θcrit.

In Condition 2 we have removed case (i) of Condition 1 since we can show it always holds, and

we have replaced the condition that Iθ(σ) is strictly decreasing in θ for all viral σ, with the

condition that this is true at σ = 1. This amended condition is sufficient for virtually the same

equilibrium analysis as we did in the Poisson model, because full adoption of public goods is

always an equilibrium around the critical threshold, and (ii) guarantees that as θ get large there

is a point where full adoption is no longer an equilibrium.

F.2 Examples

F.2.1 Zipf Distribution

We do everything here in terms of α, but it is straightforward to translate all our results in

terms of θ = (1− eα)−1. In general the generating function for a Zipf distribution is given by

G0(z) = zkΦ(ze−α, 1, k).

So in the special case where k = 1, we get

G0(z) =
ln(1− e−αz)

ln(1− e−α)
.
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It follows that

G1(z) =
G′

0(z)

G′
0(1)

=
1− e−α

1− e−αz
,

as claimed. The extinction probability ρσ under the strategy σ must satisfy

ρσ =
1− e−α

1− e−α(1− σ + σρσ)
.

We claim that ρσ = eα−1
σ

solves this. To see this, observe that

ρσ
(
1− e−α(1− σ + σρσ)

)
= −ρ2σσe

−α +
(
1− e−α(1− σ)

)
ρσ,

and so substituting ρσ = eα−1
σ

we get

−
(
eα − 1

σ

)2

(σe−α +
(
1− e−α(1− σ)

)eα − 1

σ

=
1

σ

[
−(e2α − 2eα + 1)e−α + (eα − 1− 1 + e−α) + σ(1− e−α)

]
=

1

σ
σ(1− e−α)

= 1− e−α,

and so eα−1
σ

is a fixed point of the equation ρσ = G1(1 − σ + σρσ). It is in fact the smallest

solution and therefore the extinction probability.3

Importantly, it follows from our analysis that

σρσ = eα − 1.

To calculate the expected influence, we first calculate

G′
1(z) =

e−α(1− e−α)

(1− e−αz)2
=

eα − 1

(eα − z)2
.

3We omit the details here but this follows from the fact that it is the smallest root of the quadratic which
solves ρσ = G1(1− σ + σρσ).
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So at z = 1− σ + σρσ,

G′
1(1− σ + σρσ) = G′

1(1− σ + (eα − 1))

= G′
1(e

α − σ)

=
eα − 1

(eα − eα + σ)2

=
eα − 1

σ2

=
ρσ
σ
.

Hence σG′
1(1 − σ + σρσ) = ρσ. The last step is to calculate the expected number of neighbors

who are potential adopters. We have

G
(k)
0 (1− σ) = G

(k−1)
1 (1− σ)G′

0(1) = −(k − 1)!(eα − 1)

(eα − (1− σ))k
× 1

(eα − 1) ln(1− e−α)
,

and so

∞∑
k=1

k(1− ρkσ)
σk

k!
G

(k)
0 (1− σ) = − 1

ln(1− e−α)

∞∑
k=1

k

[(
σ

eα − (1− σ)

)k

−
(

ρσσ

eα − (1− σ)

)k
]
,

Now,
∞∑
k=1

(
σ

eα − (1− σ)

)k

=
σ/(eα − (1− σ))(

σ
eα−(1−σ)

− 1
)2 =

1

1− σ
eα−(1−σ)

− 1 =
σ

eα − 1

and similarly,

∞∑
k=1

(
σρσ

eα − (1− σ)

)k

=
σ/(eα − (1− σ))(

σρσ
eα−(1−σ)

− 1
)2 =

1

1− σρσ
eα−(1−σ)

− 1 =
eα − 1

σ
.

Finally, we have

1

1−G0(1− σ + σρσ)
=

1

1− ln(e−ασ)
ln(1−e−α)

=
ln(1− e−α)

ln(eα − 1)− ln(σ)
.
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Making the substitution ρσ = eα−1
σ

and putting everything together, we have

1

1−G0(1− σ + σρσ)

∞∑
k=1

k(1− ρkσ)
σk

k!
G

(k)
0 (1− σ)

= − 1

ln(ρσ)

(
ρ−1
σ − ρσ

)
=

1− ρ2σ
−ρσ ln(ρσ)

.

Hence the expected influence when σ is viral (making the substitution θ = (eα−1)−1 = (σρσ)
−1,

and multiplying by 2) is

Iθ(σ) =
2ρσ

1− σG′
1(1− σ + σρσ)

[
1− ρ2σ

−ρσ ln(ρσ)
− 1

]
=

2ρσ
1− ρσ

[
1− ρ2σ

−ρσ ln(ρσ)
− 1

]
=

2(1 + ρσ)

− ln(ρσ)
− 2ρσ

1− ρσ

=
2(θσ + 1)

θσ ln(θσ)
− 2

θσ − 1
,

which is precisely the expression given in Section 5.2.1. On the other hand if σ is nonviral, then

Iθ(σ) =
σG′

1(σ)

1− σG′
1(σ)

=
σ

eα−1

1− σ
eα−1

=
1

eα−1
σ

− 1
.

We do not attempt to show that Condition 1 holds but it is evidently true from Figure 7.

F.2.2 Exponential Distribution

The extinction probability is the smallest solution in [0, 1] to the equation

ρσ =
1

[c− (1− σ + σρσ)(c− 1)]2
.

Using computational software (or otherwise), we find that when ρσ < 1, it is given by

ρσ =
2 + σ(c− 1)

2σ(c− 1)
−
√

4 + σ(c− 1)

2
√
σ(c− 1)

.

Notice that the key parameter here is σ(c − 1). In fact we can rewrite everything in terms of

µ = σ(c− 1) so that

ρσ =
2 + µ

2µ
−

√
4 + µ

2
√
µ

.
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The expected forward degree is given by

G′
1(1) = 2(c− 1) > 1 ⇐⇒ c >

3

2
.

Or in terms of α,
1

1− e−α
>

3

2
⇐⇒ 0 < α < ln(3).

So here, α = ln(3) is the critical threshold for the emergence of the giant component. Some

work shows

σG′
1(1− σ + σz) =

2(c− 1)σ

(c− (c− 1)(1− σ + σz))3
.

and substituting ρσ into this function gives

σG′
1(1− σ + σρσ) =

16√
(c− 1)σ(

√
(c− 1)σ +

√
4 + (c− 1)σ)3

.

Putting this all together and making the substitution substituting µ = σ(c− 1), we have

ρσ
1− σG′

1(1− σ + σρσ)
=

2

µ2 + 4µ+
√
µ
√
4 + µ(µ− 2)

.

Next we calculate the expected forward degree conditional on exposure under a viral strategy.

We have

G
(k)
0 (1− σ) =

k!(θ − 1)k−1θ

(1 + σ(θ − 1))k+1

So

∑
k

k(1− ρkσ)
σk

k!

[
k!(θ − 1)k−1

1 + σ(θ − 1))k−1

]
=

θσ

(1 + σ(θ − 1)

∑
k

k(1− ρkσ)

[
σ(θ − 1)

1 + σ(θ − 1)

]k−1

=
θσ

(1 + σ(θ − 1)

 1(
1− σ(θ−1)

1+σ(θ−1)

)2 − ρσ
1(

1− σ(θ−1)
1+σρσ(θ−1)

)2


= θσ

[
1− ρσ

1 + σ(θ − 1)(1− ρσ)

]
.

Next, we have

1

1−G0(1− σ + σρσ)
=

1 + σ(1− ρσ)(θ − 1)

1 + σ(1− ρσ)(θ − 1)− (1− σ + σρσ)
=

1 + σ(1− ρσ)(θ − 1)

θσ(1− ρσ)
.
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Putting everything together, we have

1

1−G0(1− σ + σρσ)

∞∑
k=1

k(1− ρkσ)
σk

k!
G

(k)
0 (1− σ) =

1 + σ(1− ρσ)(θ − 1)

θσ(1− ρσ)
· θσ

[
1− ρσ

1 + σ(θ − 1)(1− ρσ)

]
=

1

1− ρσ
[1− σ(1− ρσ)(θ − 1)− ρσ]

= 1 + σ(θ − 1).

Hence subtracting 1 for the neighbor in the giant component, the expected number of potential

adopting neighbors under an exponential degree distribution is simply σ(θ − 1) as claimed.

F.2.3 Power Law

The expected degree for a power law is

E[{pk}k≥0] =
ζ(γ − 1)

ζ(γ)
,

and the second moment is
ζ(γ − 2)

ζ(γ)
.

So the critical percolation threshold is

ζ(γ−1)
ζ(γ)

ζ(γ−2)
ζ(γ)

− ζ(γ−1)
ζ(γ)

=
ζ(γ − 1)

ζ(γ − 2)− ζ(γ − 1)
.

We evaluate the forward distribution and extinction probability numerically using Mathemat-

ica given the above and given the closed form expression for the generating function G1(z)

in Section 5.2.3.
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