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Abstract

Sender maximizes how many receivers buy a widget of uncertain quality. She targets
receivers to privately communicate information about the widget’s quality. After the
target chooses whether to buy the widget, other receivers observe the target’s choice
with probability increasing in the target’s popularity. We prove two results that hold
remarkably generally: Sender optimally communicates with targets as if no other re-
ceiver exists; a target’s popularity is a double-edged sword for Sender. We fully char-
acterize the optimal choice of a single target under multiple communication protocols
and establish that Sender can benefit from protocols that constrain her communica-

tion.
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Verba movent, exempla trahunt.

(Words persuade, examples compel.)

Latin proverb

1 Introduction

Startup entrepreneurs aim to persuade many investors to fund their startups. But explain-
ing their business idea often requires complex explanations and lengthy demonstrations.
As a result, they are limited to privately communicate only with a handful of potential
investors they have targeted in their networking activities and with whom they have
built stronger connections. Yet, they may reasonably hope that, were they to persuade
their target investors to invest in their startup, their example will compel others to do
the same. Therefore, an entrepreneur needs to choose both who to target in her network-
ing activities, as well as how to persuade them. Because she communicates with her target
privately, whether and how the target’s example may influence others naturally depends
on others’ expectations about what she may have told the target. Thus, intuitively, the
entrepreneur’s choice of communication should maximize, other than the probability of
persuading the target to invest, also the power of the target’s example over other poten-
tial investors. In turn, the entrepreneur’s choice of target depends on her anticipation
of the target’s influence over other potential investors. The entrepreneur may, for in-
stance, choose to target investors who are more likely to be fans of her ideas, increasing
the chance they may be persuaded. Or, on the contrary, the entrepreneur may target
famously skeptical targets, in the hope that their example may be more compelling for
others. Finally, the entrepreneur’s choice of target may take into account that an exam-
ple set by a more popular target is likely to be observed by—and hopefully compel to
invest—a greater number of other investors.

This dual problem of who to target and how to persuade them is common to many
markets and organizations, from marketing strategies aimed at targeting “influencers” to
adopt a new product or technology, to lobbying efforts aimed at popular policymakers
whose example may compel others to vote for a new law or adopt a new policy. In fact,
this problem may be more common in the era of social media, when many users can ob-
serve the example set by early adopters of a new product, technology, or policy position,
but can only indirectly infer what these influencers knew when they made their choice.

In all these situations, (i) an interested party can choose who to target in networking



activities and (ii) what and how to communicate to her target. Crucially, (iii) she cares
about persuading a larger number of decision-makers, but non-targeted decision-makers
can only observe actions taken by the target (and not what was communicated). In this
paper we introduce a one-Sender, many-receivers model of these problems of targeted
persuasion. In our benchmark model of Section 2, (i) Sender chooses a target receiver and
(ii) privately communicates with the target about the quality of a widget; (iii) Sender’s
objective is to convince as many receivers as possible to buy the widget, but non-targeted
receivers can only observe the target’s positive or negative example: his choice of whether
to buy or not. Our benchmark model and key results do not depend on the specific
communication protocol available to Sender. Furthermore, in Section 5 we generalize the
model in several directions, allowing for more general utility functions of Sender and for
the receivers’ choices to be strategic complements, for Sender to choose multiple targets,
for other receivers not to observe Sender’s choice of target but only positive examples,
and for other receivers to observe examples set by non-targeted receivers. Finally, we
discuss how the central message of our results does not change if Sender is informed
about the quality of the widget when she chooses her target.

In our model, receivers differ in two dimensions. First, some are more skeptical than
others, in the sense that they buy the widget only when they have greater beliefs that the
widget is good. In fact, some are fans: they would buy the widget in the absence of any
turther information. Second, some are more popular than others, in the sense that other
receivers observe their choice with greater probability. As we discuss later, a receiver’s
popularity naturally maps into well-known concepts of network centrality.

In Section 3, we study Sender’s problem of how to persuade a chosen target. Because
of her objective, Sender would ideally credibly induce other receivers to believe she com-
municates with the target in the way that maximizes the compelling power of the target’s
example. However, in equilibrium, other receivers correctly anticipate that, in the pri-
vacy of the Sender-target communication, Sender would renege on such a commitment
and simply try to persuade the target so as to maximize the probability that he will set
a positive example. Therefore, any Sender’s plan to fool other receivers will “unravel.”
This logic leads to our Example-unraveling theorem. It says that, in any equilibrium, and in-
dependently of the choice of target, Sender’s optimal private communication maximizes
the probability that the target buys the widget. That is, Sender optimally communicates
with the target as if no other receiver exists, even though Sender’s objective is, in fact, to
persuade as many receivers as possible.

In Section 4, we exploit this feature of our model to derive two general results regard-
ing the optimal choice of who to target. First, we show that all equilibria are of one of



two types. In only fans equilibria, Sender optimally chooses a target and communicates
with him in such a way that the target buys the widget if and only if he is a fan. Thus,
in equilibrium, the target’s example carries no information for other receivers, and they
too buy the widget if and only if they are fans. However, this does not mean that Sender
communicates to the target no useful information for other receivers—rather, that this in-
formation is not sufficient to affect the target’s choice and so his example has no power
to convey this information to other receivers. In contrast, in informative example equilib-
ria, Sender’s optimal choice of target and communication induces the target to buy with
probability strictly between 0 and 1. Thus, in equilibrium, the target’s example has the
power to influence other receivers. In particular, a positive example will (generically)
compel some skeptical receivers to buy and a negative example will compel some fans
not to buy. This feature of equilibrium behavior underpins the second result: what makes
a target valuable for Sender crucially depends on his popularity in both positive and neg-
ative ways. In fact, an increase in a target’s popularity is a double-edged sword for Sender.
On the one hand, a more popular target is more likely, via a positive example, to persuade
other receivers to buy the widget. On the other hand, he is also more likely to persuade
them, via a negative example, not to buy the widget.

We show in Section 6 how these results allow us to fully characterize equilibrium
behavior under different communication protocols. We focus on two canonical cases:
Bayesian persuasion a la Kamenica and Gentzkow (2011) and (generalized) information dis-
closure (Dye, 1985; Milgrom, 1981). When Sender’s communication with the target takes
the form of Bayesian persuasion, Sender optimally targets a skeptical receiver only if he is
not too skeptical. Intuitively, Sender anticipates that targeting a skeptical receiver entails
a tradeoff: if the target is persuaded to buy, his positive example will compel all receivers
less skeptical than he is to buy the widget; but if he is not persuaded, his negative example
will compel all receivers, including all fans, not to buy the widget. Because the probabil-
ity to persuade a target is decreasing in the target’s skepticism, some targets are just too
skeptical for Sender. If all skeptical receivers are too skeptical, an only fans equilibrium
arises in which Sender gives up on the idea of persuading anybody other than fans who
are already willing to buy the widget.

What makes a skeptic “too skeptical” for Sender crucially depends on the double-
edged sword of his popularity. Intuitively, the positive effect of popularity dominates
when the target is less skeptical, when there are more skeptical receivers who are not
as skeptical as he is, or when there are fewer fans. We show that in fact the negative
effect of popularity may dominate for Sender’s equilibrium choice of a skeptical target.

Le., in equilibrium, a marginal increase in the target’s popularity may induce Sender to



optimally switch to a less popular target, or even to targeting a fan (thus inducing an only
fans equilibrium), to avoid losing too many fans in the event of a negative example.

We compare these results with the case when Sender-target communication takes the
form of information disclosure. We characterize how Sender optimally communicates
with her target and how other receivers interpret the target’s example in Sender’s pre-
ferred equilibrium. Importantly, we show that the less freedom afforded to Sender to
“tailor” her communication to the target under information disclosure may in fact ben-
efit Sender. Intuitively, recall that in our setting Sender would ideally credibly induce
other receivers to believe she communicates with the target in the way that would maxi-
mize the power of the target’s example. However, our Example-unraveling theorem says
that such a commitment is not credible. Under Bayesian persuasion this forces Sender to
choose the target based on the target’s skepticism, because the target’s positive example
can only affect less skeptical receivers. In contrast, under information disclosure Sender
is in part (mechanically) committed to how she communicates with the target. Therefore,
the effect of a target’s positive example is in part independent of the target’s skepticism
and his example may affect even receivers more skeptical than he is. The lesser freedom
in choosing how to communicate affords Sender greater freedom in choosing the optimal
target based on his popularity, in turn increasing the probability that the target’s example
compels more receivers. Thus, when popularity has a positive effect on a target’s value,
Sender’s expected payoff may be strictly greater under information disclosure than under
Bayesian persuasion.

Our model includes ingredients from both the Sender-Receiver communication litera-
ture and models of observational learning. A key ingredient is that the action of the target
is observed by other receivers and, because the target in equilibrium possesses greater in-
formation, his example may compel other receivers. We share this observational structure
with models of social learning (e.g., Banerjee, 1992; Bikhchandani et al., 1992) and our spe-
cific one-to-many process is reminiscent of the classic two-step flow model of Katz and
Lazarsfeld (1955). This simple observational structure allows us to analyze how the tar-
get’s popularity affects the Sender’s choice of who to target. Our notion of popularity
can be interpreted as an agent’s diffusion centrality (Banerjee et al., 2013) in a larger “net-
work” among receivers, i.e., a measure of how many other agents are likely to observe
the target’s action in the presence of exogenous and independent link failures (see Ap-
pendix E for details). We think of our reduced-form approach as capturing a feature of
many real-world networks in which agents lack complete information about the network
structure (who “follows” who), but can rely on proxies that measure influence, such as

follower counts or ratings.



Works that combine social learning (or social experimentation') with the presence of a
sender include Caminal and Vives (1996) and Welch (1992). Arieli et al. (2023) study op-
timal information design to persuade a sequence of receivers who observe predecessors’
actions. Recent work on Bayesian persuasion in networks (Candogan et al., 2020; Ker-
man and Tenev, 2021) emphasizes how network topology shapes the optimal information
structure. However, these models do not tackle the question of who Sender should target
to start such a process of social learning.

Similarly, Arieli and Babichenko (2019), Bardhi and Guo (2018), Chan et al. (2019), and
Wang (2015) study private Bayesian persuasion of a group. However, in their context,
Sender can communicate with all receivers. Therefore, these models are not well suited
to understand who Sender should target to communicate with or how she should com-
municate with the target when his example may persuade others.

Our focus on who Sender should target is shared by an extensive literature on target-
ing “influencers” in networks (e.g., Ballester et al., 2006; Galeotti and Goyal, 2009). This
literature often abstracts away from the question of how Sender should persuade by as-
suming that targets take the desired action. In contrast, we capture influence in a reduced
form but allow the target’s example to be endogenous in the sense that Sender needs to
persuade the target to buy.

Caillaud and Tirole (2007) and Schnakenberg (2017) combine the question of who
Sender should communicate to with the idea that the target of this communication may
in turn talk to other receivers. Caillaud and Tirole (2007) study a model in which Sender
chooses who to target and the target’s example can persuade others. However, in their
model Sender cannot choose how to communicate to the target and other receivers do
not need to make conjectures about what type of information Sender communicated.
Schnakenberg (2017) models lobbying through cheap talk (Crawford and Sobel, 1982)
with heterogeneous legislators, showing how Sender can target allied legislators to act
as intermediaries. Awad (2020) and Awad and Minaudier (2025) instead allow Sender
to communicate hard information. In these models, targeted legislators choose whether
to relay Sender’s message or endorse a policy via cheap talk.? In contrast, in our model
indirect persuasion occurs through the action (example) of the target and we study how

different receivers’ skepticism and their popularity among other receivers combine in de-

'In models of social experimentation, agents observe outcomes of other agents rather than the actions
they take, so there is an informational externality but no informational asymmetry (Gale and Kariv, 2003).

?In these political applications, Sender wishes to persuade a sufficiently large set of receivers—typically,
a majority. In our model, Sender wishes to maximize the number of receivers who are persuaded. Never-
theless, as we discuss in Section 5, our central results only rely on the assumption that Sender’s payoff is
increasing in the expected number of receivers who are persuaded and therefore applies to majority settings
if voting is probabilistic (Lindbeck and Weibull, 1987).
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termining Sender’s optimal choice of target.

Egorov and Sonin (2019) also study a problem in which Sender wishes to persuade
many receivers and receivers may indirectly learn Sender’s message from other receivers.
However, their focus is on who Sender should “attract” in designing messages that re-
ceivers can only access at a cost. Other receivers are aware of how Sender communicates,
but may not be willing to pay the cost of observing the actual message. In contrast, in our
model Sender can choose who to target directly and then can choose how to communicate
with him, while the problem for other receivers is that they do not necessarily know how
and what Sender communicated.

2 A model of targeted persuasion

We begin with a benchmark model in which: (i) Sender’s payoff is equal to the number
of receivers who buy the widget and receivers’ payoffs depend only on their own choice
and the quality of the widget, but not on other receivers’ choices; (ii) Sender’s target is a
single receiver; (iii) non-targeted receivers observe the identity of the target (but may not
observe his choice); (iv) non-targeted receivers can observe the choice of the target, but
not of other receivers; and (v) at the time of choosing the target, Sender is uninformed
about the quality of the widget. Section 5 relaxes each of these assumptions and shows

that our main results continue to hold.

2.1 Benchmark model

There is a Sender (“she”) and R > 2 receivers (“he”), indexed by r € R = {1, ..., R}.

Sender. Sender wishes to maximize the number of receivers who buy a widget of uncer-
tain quality, 0 € {G, B}. The widget is good (§ = G) with probability 1 € (0, 1). Otherwise
itis bad (§ = B). Let a, = 1l if receiver r € R buys the widget and @, = 0 otherwise. Sender

maximizes ) . a.

Receivers. Each receiver has a unit demand for the widget and buys the widget if and
only if he believes it is good with sufficiently high probability. Formally, let p, be receiver
r’s (posterior) belief that the widget is good. Receiver r buys the widget if and only
if p, > o,, where o, € [0,1] is receiver r’s publicly known skepticism. Without loss of
generality, we order receivers by their skepticism: 01 < 0y < ... < or. We say that

receiver ris a fan if o, < 1, i.e., he chooses to buy in the absence of any further information;



otherwise, he is a skeptic. Let F' = max{r € R : 0, < u} be the number of fans. To avoid
uninteresting cases, we assume that there is at least one fan and at least one skeptic:

01 < < OR.

Targeted persuasion. A targeted persuasion game plays out as follows. First, Sender
chooses a target t € R. Second, nature chooses quality § € {G, B}. Third, Sender privately
communicates with ¢. We discuss below what information Sender may obtain about the
widget and how she may communicate it to the target. Fourth, ¢ purchases the widget if
and only if p, > 0, and nature determines whether each non-targeted receiver observes
t’s choice: each receiver r # t observes receiver t’s choice with probability equal to t’s
publicly known popularity, =, € (0, 1). Finally, each receiver r buys the widget if and only
if p. > o,.

Private communication. Communication between Sender and her target is private. The
specific communication protocol specifies how the interaction between Sender and target
affects: (i) what information Sender obtains about the widget and (ii) how it is commu-
nicated to her target. We model a generic communication protocol as a publicly known
triple CP = (M, A, I), where M are the possible messages privately observed by Sender
and 2 is the set of possible messages the target may observe from Sender’s communi-
cation. A(mg) C 2™ is the set of allowable messages that Sender may communicate to the
target, conditional on observing mg € M. [ is a collection of information structures, i.e.,
families of conditional distributions over M of the form i = {i(- | 0) }sc(c.B)-

A communication protocol CP induces a communication game between Sender and
the target as follows. First, Sender chooses an information structure i € I, observed by the
target. Conditional on ¢, Sender privately observes a message mgs drawn with probability
i(mg | #). Finally, Sender chooses which allowable message m; € A(mg) to communicate
to the target. Notice that the communication between Sender and the target is private so
that non-targeted receivers do not observe Sender’s choice of information structure, nor
do they observe which message Sender chooses to communicate to the target.

Our generic communication protocol encompasses many examples of interest, includ-
ing two canonical cases we study in greater detail in Section 4. First, when [ includes all
possible information structures and A(mg) = {mg} for all mg € M, so that Sender com-
mits to truthfully communicate the message received, the communication game is one of
Bayesian persuasion (Kamenica and Gentzkow, 2011). Second, when I is a singleton, so
that Sender is simply endowed with information, and A(mg) = {m, € 2 : mg € m,},

so that Sender cannot lie about the message received, the communication game is one of



information disclosure a la Milgrom (1981).

Solution concept. A strategy for Sender is a triple (¢, {it}ter, {¢i}ier), Where t is the
Sender’s choice of target, and, for each possible ¢, i; is Sender’s choice of information

structure, and
¢ €C={c: M — ARM)|V¥mg € M, supp(c(:|ms)) C A(ms)}

is Sender’s communication strategy for each possible observed message mg.

For each receiver r € R, if he is the chosen target, ¢, his posterior p; (i, m;) is a function
of both Sender’s choice of information structure ¢, and the observed message m;; if he
is not the target, his posterior p, (¢ | o;) for each possible target t # r is a function of
the target’s identity ¢, and r’s (private and independent) observation o, € {0, 1,0} of the
target’s action, where o, = 0 when r observes that ¢t does not buy, o, = 1 when he observes
that ¢ buys, and o, = () when he does not observe t’s action.*

It is useful to define Sender’s expected payoff (the number of widgets sold) given a
choice of target ¢, V,(my, p;, p—+), as a function of the message communicated to the target,
my, the target t’s posterior belief, p;, and the non-targeted receivers’ posterior beliefs when
Sender targets t, p_: = {p,(t) },2:

Vi(me, pe, p—t) = Lpi(iv, me) > o] (1 + Z (Wtﬂ[pr(t 1) > o, ] + (1 —m)1p(t|0) > UT)])
r#t

+ Lpi(i, me) < 03] (Z (mel[pe(t 1 0) > o] + (1 = m)L[p(t | 0) > o—r)]>

r#t

In what follows, we characterize the set of perfect Bayesian equilibria (Fudenberg and
Tirole, 1991)—henceforth “equilibrium.” In our context, an assessment (¢, {i; }tcr, {¢t }ter,

{pt, P_t}ter) is an equilibrium if:

1. For each target t € R, the posterior p,(t) of each non-targeted receiver r # t is

3We allow for Sender to be partially, fully, or not informed, and for her information endowment to be
unknown to the target. This accommodates other well-known extensions of Milgrom’s setting, e.g., in Dye
(1985) and Hart et al. (2017).

“We abuse notation slightly. Formally, for each possible target ¢ and non-targeted receiver r’s obser-
vation o, in equilibrium a target’s posterior p, equals the value of the function p;(i;, m;); a non-targeted
receiver’s posterior p, equals the value of the function p,.(¢ | o;).

8



derived using Bayes’ rule, Sender’s strategy, and the target’s posterior, p;: 5

2 mieA(ms): 1D msen it(mslf = Gle(my | ms)

t(i¢,me) <ot
pr(t|0) = £ , ; (1)
D mieA(ms): Z&e{G,B} Pr(6) ZmSEM ir(ms|0)cy(me | ms)

pt(ig,m) <oy

zthA(mS): MZmSeM Zt(m5|9 = G>Ct(mt | mS)

¢ (it,me) >0t
pr(t]1)= - : ; ()
D mieA(ms): ZQE{G,B} Pr(6) ZmSEM ir(ms|0)c(my | ms)

pt(it,me)>0¢

pr(t|0) = p. 3)

2. For each target t € R, his posterior p; is derived using Bayes’ rule and Sender’s
strategy: for all m, Sender communicates with positive probability,

MZmSeM ir(msl0 = G)ey(my | ms)

Pe(te, my) = , . 4)
) = e PH(0) ey i (mslB) ey | )
and, if m; = {m/s} ¢ A(mg) for all mg # m/, then®
) i (meld = G
pulin, {mg)) = —tiulmslo =G) 5)

a ZBG{G,B} Pr(0)iy(ms|0)

3. For each target ¢ € R, Sender’s choice of information structure i, and communi-
cation strategy c, are optimal given the posterior beliefs of the target, p,, and of

non-targeted receivers, p_;:

iy € argmax Z Pr(0) Z i(ms | 0) Z ce(my | ms)Vi(me, e, 1) (6)

€l peqa,By mseM me€A(ms)

and, for each observed message mgs € supp(i:(- | ¢)) and each allowable message
my € A(myg),

ci(my | mg) > 0= my; € arg r(na;)d/}(m,pt,p_t). (7)
meA(mg

>Equation (3) is a version of the “no signaling what you don’t know” condition of Fudenberg and Tirole
(1991).

®This last requirement says that, if the communication protocol allows Sender to credibly communi-
cate the message she observes, then the target’s belief upon observing such credible communication must
coincide with Sender’s belief. This is also a version of the “no signaling what you don’t know condition”.
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4. Sender’s choice of target is sequentially optimal:

t € arg max Z Pr(0) Z iv(mg | 6) Z co(my | mg)Ve(my,py,p—v). (8)

!
VER  yera,B) msEM myeA(ms)

All proofs are in Appendix A.

3 How to persuade a target

We now study how Sender optimally chooses to communicate with the target. To do so,
we fix the identity of the target ¢, and study how receivers’ equilibrium behavior affects
Sender’s private communication with ¢.

We begin by studying how the target’s example—his choice to buy—affects other re-
ceivers’ beliefs regarding the quality of the widget, and therefore their choice of whether
tobuy it. Lemma 1 says that a positive example—the target buys—induces other receivers
to hold more positive beliefs about the quality of the widget.

Lemma 1 (The power of examples). In any equilibrium (t*,{i; }ier, {¢} }er, {0, D" Her),
and for each receiver t € R, if Sender targets t, then receiver r’s posterior belief is greater when he
observes that t buys the widget than when he observes that t does not: for all r # t, pi(t | 1) >

pr(t]0).

Lemma 1 says that the target’s example has the power to influence other receivers. In-
tuitively, if other receivers observe that the target ¢ buys the widget, then they infer that
the target’s posterior belief, p;, is at least equal to his skepticism, o;. Conversely, if they
observe that the target does not buy, then they infer that his posterior belief is less than
his skepticism. Since the target has access to more information through his communica-
tion with Sender, other receivers who observe his example also make inference about the
quality of the widget. They infer that the widget is more likely to be good if they observe
that the target buys the widget than if they observe that the target does not buy it.

Lemma 1 immediately allows us to establish the following key step towards our main
theorem. Lemma 2 says that, on average, a positive example weakly increases the proba-
bility that non-targeted receivers buy the widget. That is, a positive example may compel
other receivers to buy.

Lemma 2 (Examples compel). In any equilibrium (t*, {i} hier, {c; her, {pf, P2, Her), and for
each receiver t € R, if Sender targets t, then receiver r’s probability of buying the widget is greater

10



if the target buys the widget: for all r # t,

ml[pr(t 1) = o] + (1 = m)Upp(t | 0) = 00 = m[pr(t | 0) = 03] + (1 = m)Upr(¢ [ 0) = 03],
©)

We can now establish our main result regarding how Sender should persuade the target.
Theorem 1 says that, in any equilibrium, Sender optimally communicates with the target
as if the target was the only receiver: Sender simply maximizes the probability that the
target buys the widget. Notice that this feature of equilibrium play holds both on and
off the equilibrium path (i.e., in any proper subgame of the targeted persuasion game
resulting from Sender choosing a target).

Theorem 1 (Example-unraveling). In any equilibrium (t*, {i} }ier, {¢; her, D}, P }er),
and for each receiver t € R, if Sender targets t, then she maximizes the probability that t buys the
widget:

iy € argmax Z Pr(0) Z i(mg | 0) Z c; (my | mg)1[p; (i, my) > oy (10)

€l peqa.By mseM me€A(ms)

and, for each observed message mg € supp(i; (- | 6)) and each allowable message m; € A(myg),

c;(my | mg) > 0= m; € argmax 1[p; (i}, m) > oyl. (11)
meA(ms)

Theorem 1 says that, in equilibrium, Sender communicates with any target as if other
receivers did not exist, even though Sender’s objective is to maximize how many receivers
buy the widget and she knows that, with probability 7;, each non-targeted receiver will
observe the target’s example. This result holds precisely because of Lemma 2: since the
probability a non-targeted receiver buys the widget is greater if the target buys the widget,
a communication strategy for Sender which maximizes the equilibrium probability that
the target buys the widget also maximizes the probability that each other receiver buys it.
The key implication of Theorem 1 is that Sender has limited scope for choosing a tar-
get to set an example for other receivers. Ideally, Sender would prefer to commit to a
communication strategy that maximizes how many receivers buy the widget—not the
equilibrium probability the target buys. But other receivers would correctly anticipate
that, in the privacy of the Sender-target communication, Sender would renege such a

commitment and communicate such as to maximize the probability the target sets a pos-
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itive example. Therefore, any Sender’s plan to fool other receivers will “unravel”.” In the

following section, we use Theorem 1 to study Sender’s optimal choice of target.

4 Who to target

We now turn to the question of who Sender should target. Our main observation is that
Sender’s key tradeoffs are the same across communication protocols.

We first note that the set of possible equilibria can be divided according to whether the
target’s example has the power to influence other receivers—i.e., whether his example is
informative. Proposition 1 says that, independent of the communication protocol, all
equilibria are of one of two types. In one, Sender chooses a target and communicates
with him in such a way that, in equilibrium, the target buys the widget if and only if he is
a fan—i.e., he would have bought the widget in the absence of any further information.
Therefore, the target’s example provides no useful information to other receivers, and
each receiver buys the widget if and only if he is a fan. In contrast, in the other type
of equilibrium, Sender optimally chooses a target and communicates with him in such a
way that, in equilibrium, the target buys the widget with probability strictly between 0
and 1. In turn, this means that the target’s example is informative for other receivers—i.e.,

in equilibrium, the target’s example has (strict) power.

Proposition 1 (Only fans and informative example equilibria). In any equilibrium (t*, {i} }+exr,

{¢; Veer, {pF, P* Her), either:

1. (Only fans equilibrium.) Each receiver r, including the target, buys the widget if and only
if he is a fan (o, < p), or

2. (Informative example equilibrium.) Sender’s target, t*, buys the widget with probability
strictly between 0 and 1 and, for every receiver r # t*, his posterior belief when he observes
that the target buys (respectively, does not buy) the widget is strictly greater (respectively,
smaller) than the prior: pi(t* | 1) > pu > pi(t* | 0).

We now characterize Sender’s equilibrium value of choosing a specific target. To do so,
we first recall that, by Theorem 1, in equilibrium Sender communicates with a target—
i.e., she chooses iy and cj, given the target’s posterior belief p;—so as to maximize the

7 Another—perhaps subtle—detail of Theorem 1, is that because Sender’s equilibrium communication
strategy maximizes the equilibrium probability that the target buys, it crucially depends on the target’s
equilibrium belief as a function of the messages that Sender communicates to him. This detail will be
important when the communication protocol allows for multiple equilibrium beliefs for the target (see
Section 6.2).
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target’s probability of buying the widget. For a given choice of i;, the messages that
may be observed by Sender, M (i;) = {mg € M : 30 € {G, B}, i;(mg | §) > 0}, are divided
into two sets: those that allow Sender to communicate a message m; that induces the
target to buy (p;(i;, m¢) > o) and those not allowing such a message. Theorem 1 says
that whenever Sender observes a message of the first type, she always prefers to induce
the target to buy. Whenever she observes a message of the second type, she cannot do
anything else than induce the target not to buy. Therefore, Sender-target equilibrium
private communication is completely characterized by an information structure 7; and a
set Y,*(iy, p;) € M(i;) of observable messages for Sender that, in equilibrium, result in the

target buying the widget.

Lemma 3 (Characterizing Sender-target communication). In any equilibrium (t*, {i} }er,
{¢; her, {p; . P% }ier), and for each receiver t € R, there exists a set of messages Y;* (i}, p;) C
M (iy) such that, if Sender targets t, then t buys the widget if and only if Sender observes a message
in Y, (i, py)-

In an informative example equilibrium, Y;: # 0 and Y, C M (i}.), so that a non-targeted

receiver r # t* who observes that the target buys the widget will have posterior belief
pr(t* | 1) = Pr(0 = G | ms € V" (ir-, pi ) i) > 113 (12)
while one who observes that the target does not buy will have posterior belief
pr(t* | 0) =Pr(0 = G | ms & Y"(if., pi- ) if) < p- (13)

In contrast, in an only fans equilibrium, Yt € {0, M (i}.)}, so that non-targeted receivers’
posterior always equals the prior, .

Sender’s value of choosing a target is given by the expected number of receivers that
will buy the widget if Sender chooses him. Because powerful examples can compel re-
ceivers to buy and not to buy (Lemma 2), Sender is optimally choosing a risky lottery.
If the target buys the widget, then his positive example may compel even a skeptical re-
ceiver to buy, adding to Sender’s sales. Therefore, intuitively, a more popular target is
valuable to Sender because his example is bound to compel more receivers. However,
such a lottery also carries risks: because Senders has fans, a negative example may com-
pel some of them not to buy, reducing Sender’s sales. Therefore, a more popular target
also carries greater risks.

To formally analyze this tradeoff and study how the equilibrium value of targeting a
specific receiver depends on his popularity, it is useful to define the following equilibrium
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quantities. First, given an information structure i; and a set of messages Y,* C M (i), let
Gi(is,pp) = H{r e R\{t} s p < on <Pr(0 = G | ms € Y (i,p;), )} [ 20 (14)

denote the number of skeptical receivers (not equal to ¢) who, in (any continuation-game)
equilibrium, are compelled to buy the widget if they observe ¢’s positive example. This
captures the potential gains from the target’s example. Similarly, let

Li(is,p;) = [{r € R\A{t} : Pr(0 = G | ms ¢ Y, (i3, p7), 7)) <or <p}p[20 (15

be the number of fans (not equal to ¢) who, in (any continuation-game) equilibrium, are
compelled not to buy the widget if they observe ¢’s negative example. This captures the
potential losses from the target’s example. Finally, let

F,=max{r e R\{t}:0, <p}e{F—-1F}

be the number of fans (not equal to ?).
Notice that, because of Theorem 1, the equilibrium probability of Sender observing a

message in Y,* under i;,
Pr(i;, py) = Pr(mg € Y/ (45, ), if)

is independent of the target’s popularity . It follows that G (i}, p;) and L; (i}, pf) are also
independent of the target’s popularity. Therefore, we can characterize the equilibrium

value of targeting receiver ¢ as a linear function of his popularity, 7.

Lemma 4 (The equilibrium value of a targeting a receiver). In any equilibrium (t*, {i} }er,
{¢; Yeer, {P}, P* }ier), and for each receiver t € R, Sender’s value E[V;* (i}, pf)] of targeting t is
given by:

BV (7 p)] = Pr(i, o) (1 + mGi(if, pr)) — (1= B (i, pr))me Ly (i, p7) + Fi (16)

An immediate implication of (16) is that the popularity 7, of a target ¢ is a double-edged
sword for Sender—whether Sender benefits from a more popular target depends on the

potential gains and losses from his example.

Proposition 2 (The double-edged sword of popularity). In any equilibrium, (t*, {i} }ier,
{¢; her, {p;, P }ier), Sender’s value E[V/*(if, p;)] of targeting receiver t € R is:

1. increasing with his popularity if the expected gains from his example are greater than the
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expected losses from it: Py (if, p;) Gy (7, p;) > (1 = By (if, 7)) Ly (if, pf),

2. decreasing with his popularity if the expected gains from his example are less than the ex-
pected losses from it: Py (i, py) Gy (i, py) < (1= By (37, pp) Li (67, pp)-

The relative importance of gains and losses from a target’s example crucially depend on
(i) the probability P/ (i, p;) with which the target buys the widget under Sender’s opti-
mal communication and (ii) the distribution of skepticism among other receivers. There-
fore, the Example-unraveling theorem and The double-edged sword of popularity jointly
drive the choice of the optimal target. In fact, we will show that, in equilibrium, Sender
may optimally choose a target “despite” his popularity—i.e., an increase in the target’s
popularity may induce Sender to switch to a less popular target (see Corollary 1).

In Section 6 we fully characterize equilibrium behavior in two canonical special cases
of our model: when communication takes the form of Bayesian persuasion and when it

takes the form of information disclosure.?

The full characterization of equilibrium be-
havior allows us to discuss (i) Sender’s optimal choice of target, (ii) when the target’s
popularity is, in equilibrium, a positive or a negative feature from Sender’s perspective,
and (iii) why Sender may benefit from communication protocols that allow her less flex-
ibility. Before that, we pause to discuss how our results extend if we relax some of our

benchmark assumptions.

5 Discussion of model assumptions

We now discuss how our results change (or do not change) if we relax several of the as-
sumptions made in our benchmark model. We discuss each assumption in a separate
subsection. The reader may skip this section without any loss of understanding of subse-
quent sections.

5.1 Nonlinear Sender’s payoff and strategic complementarities

In Online Appendix B, we extend the benchmark model to allow for Sender’s payoff
to be strictly increasing in receivers” actions and for strategic complementarities between

receivers’ actions (a receiver’s incentive to buy the widget is higher if more other receivers

8 Another canonical example one might consider is cheap talk (Crawford and Sobel, 1982). In our setting
cheap talk turns out to be trivial: the only equilibrium is a babbling one.
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buy the widget).9 The former accommodates, for example, when Sender aims to persuade
receivers to vote for a bill and she expects each receiver to vote sincerely but abstain
with positive probability'®. The latter accommodates consumption complementarities
between receivers.

The Example-unraveling Theorem extends verbatim. Intuitively, observing that the
target buys increases both a non-targeted receiver’s posterior that the widget is good and
his incentive to buy, both because he knows that the target himself has bought the wid-
get and because he expects other non-targets to buy with greater probability. Combined,
these mean that the equilibrium distribution over non-targets’ actions, conditional on
the target buying, first-order stochastically dominates that when the target does not buy.
Hence Sender’s payoff is greater when the target buys, so that, in equilibrium, she maxi-
mizes the probability that the target buys given the strategies and beliefs of non-targets.

Likewise, popularity continues to be a double-edged sword. However, both edges are
“sharper” when receivers’ actions are strategic complements. In this case, a higher pop-
ularity also raises a non-target’s belief about whether other receivers buy (not buy) upon
observing the target buy (not buy). This means that the marginal effect of an increase in
popularity on the number of receivers who buy (do not buy) when the target buys (does
not buy) is greater.

5.2 Multiple targets

The benchmark model assumes that Sender can only privately communicate with a single
target. In Online Appendix C, we show that the Example-unraveling Theorem extends to
a variation of the model in which: (i) Sender chooses a subsetof upto 7" € {1,..., R — 1}
targets and then privately communicates with each one of them; (ii) all targets then in-
dividually and simultaneously choose whether to buy the widget; and (iii) before choos-
ing whether to buy the widget, each non-targeted receiver independently observes at
most one targeted receiver’s choice with probability determined by the target’s popu-
larity. In particular, the Example-unraveling Theorem now implies that Sender max-
imizes the probability that each target buys holding fixed the strategies and beliefs of
non-targeted receivers. We further show that even if assumption (ii) is relaxed to allow

for Sender’s communication to be correlated across targeted receivers, a weaker version

9Because of strategic complementarities, for a given set of non-targets’ beliefs about the quality of the
widget upon observing the target’s actions, there can be multiple equilibria in the continuation game be-
tween non-targets. We adopt the standard approach in the literature, and assume that receivers play the
largest equilibrium, which exists (see Milgrom and Roberts, 1990) and is also the Sender-preferred one.
0This is commonly assumed in probabilistic voting models (see Lindbeck and Weibull, 1987).
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of the Example-unraveling Theorem continues to hold. Namely, for each targeted re-
ceiver, Sender’s equilibrium information structure maximizes the probability the target
buys among all information structures which induce the same distribution over messages

sent to other targets.

5.3 Unobserved target identity

In our benchmark model, Sender’s choice of target is public, in the sense that all receivers
observe who is targeted, even when they do not observe the target’s example. In many
applications, it is reasonable to think that Sender’s choice of target—and not only her
communication with him—is private information, so that other receivers only learn the
identity of the target if they observe the target’s example.!! Our analysis can easily ac-
commodate such a variation of our model. In particular, we note that, in any equilibrium,
all non-targeted receivers must correctly conjecture Sender’s equilibrium choice of target.
Therefore, our results, including the Example-unraveling Theorem and The double-edged

sword of popularity, hold verbatim.

5.4 Receivers observing other receivers’ actions

Our benchmark model makes the simplifying assumption that only the target can set
an example. In more complex networks, some non-targeted receivers may be influential
enough that their choice of whether to buy the widget is also observed by—and influence
the choice of—some other receivers. In Online Appendix D, we extend our results to a
simple variation of our model that captures this idea. We assume that, after nature has
chosen which non-targeted receiver observes the choice of the target, all receivers make
a truthful announcement of their intention to buy, given their (interim) belief about the
quality of the widget. For each ordered pair of receivers (r, j), with r # j, let 0.(j) € [0, 1]
be the probability that r observes j’s announcements.'? Finally, all non-targeted receivers
make their choice.”

The Example-unraveling Theorem continues to hold in this extension, but examples
are more powerful. Intuitively, persuading the target to buy increases the probability that
those who observe his example also announce their intention to buy. Hence, the target’s

1The arguments in this section hold also if non-targeted receivers can only observe positive examples—
i.e., if they observe nothing unless the target in fact buys the widget.

12 A natural special case has o,.(j) = 7;, so that j’s popularity equals the probability that other receivers
learn his intentions to buy or not.

30ur benchmark model obtains if 0,.(j) = 0 for all r and ;.
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positive example spreads to more non-targeted receivers through the influence of those
compelled by his example.

Similarly, popularity remains a double-edged sword. However, like when receivers’
actions are strategic complements, both edges are “sharper” when the target’s example
can spread through the announcement of other influential receivers.

5.5 Informed Sender and signaling through targeting

We can also study a variation of our model in which Sender is informed about the quality
of the widget, so that ¢ can also be interpreted as Sender’s type, with § = 1 (respectively,
¢ = 0) meaning that Sender is good (respectively, bad). We assume that Sender-target
communication is sufficiently rich in the sense that good Sender has access to a message
that is unavailable to bad Sender."* It follows that, in any equilibrium, the target fully
learns 6. Therefore, in equilibrium, every non-targeted receiver who observes the target’s
example also fully learns ¢. These two observations guarantee that an analogous result
to the Example-unraveling Theorem holds: for a given target, both good and bad Sender
maximize the equilibrium probability that the target buys the widget. Furthermore, it is
easy to see that the equilibrium expected sales generated by a target depend only on his
popularity and not on his skepticism. In particular, the double-edged sword of popularity
now takes a different form: a target’s greater popularity is beneficial to good Sender and
damaging for bad Sender. Nevertheless, because Sender is now informed, her choice of
target may reveal information about the quality of the widget. The consequence of this
is that, in any equilibrium, bad Sender mimics good Sender, lest she reveal her type. Le.,
in equilibrium both types of Sender choose the same target. Because a greater target’s
popularity benefits good Sender, in equilibrium, both good and bad Sender choose to

target the receiver with greatest popularity.

6 Optimal targeted persuasion under different communi-

cation protocols

6.1 Bayesian Persuasion

We now study optimal targeted persuasion when Sender-target communication takes the

form of Bayesian persuasion a la Kamenica and Gentzkow (2011). In this setting, Sender

41.e., there exist a message m¢ observed by Sender on which she learns § = G and a message mp on
which she learns 6§ = B such that A(mg) \ A(mg) # 0.
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can choose any information structure, but must truthfully communicate to the target the
message she observes. Le., I = {i : © — AM} and A(mg) = {mg} for all mg € M. We
assume that Sender has access to at least two messages: |M/| > 1.

We begin by characterizing the value of a target for Sender. Lemma 5 says that, in any
equilibrium, the probability that the target buys depends on the target’s skepticism, o,.

Lemma 5 (The optimal Bayesian persuasion of a target.). Suppose that communication takes
the form of Bayesian persuasion. In any equilibrium (t*, {if }ier, {¢} her, {pf, D"+ }1er), and for
each receiver t € R, if Sender targets t, then t buys the widget with probability min{1, 1/, }.

Intuitively, because under Bayesian persuasion Sender must truthfully reveal her mes-
sage, for a given information structure, the probability that the target buys the widget
coincides with the probability that Sender’s own posterior exceeds the target’s threshold,
0;. Then, by Theorem 1, in equilibrium Sender chooses the information structure which
maximizes the probability her own posterior exceeds o;. If ¢ is a skeptic, this involves
choosing an information structure that induces only posteriors p;, = 0 (¢ is sure that the
widget is bad) and p; = o, (the target is just indifferent between buying and not buying
the widget). Bayes plausibility then yields that the probability of inducing p, = o, equals
p/o. If instead t is a fan (o, < p), so that he buys when completely uninformed about the
quality of the widget, then this involves choosing any information structure that always
induces posteriors under which the target buys.

Lemma 6 characterizes the power of the target’s example over non-targeted receivers’
behavior. It says that a fan’s example has no power, while a skeptic’s positive example

persuades all receivers who are less skeptical than he is.

Lemma 6 (The power of examples under Bayesian persuasion). Suppose that communica-
tion takes the form of Bayesian persuasion. In any equilibrium (t*, {i} }ier, {c} }rer, {0}, D"  Her),
and for each receiver t € R, if Sender targets t then, for all receivers r # t:

1. (If the target is a fan.) If o, < p, then r buys the widget if and only if he is a fan (o, < p).

2. (If the target is a skeptic.) If o, > p, then r buys the widget if and only if either he
observes that t buys the widget and he is less skeptical than t (o, < o) or he does not

observe t's choice and he is a fan (o, < p).

Intuitively, when Sender targets a fan, all receivers correctly anticipate that the target will
always buy the widget. Therefore, the target’s example provides no useful information
to other receivers. In contrast, when Sender targets a skeptic, all other receivers correctly
anticipate that Sender will optimally persuade the target. Therefore, if they observe that
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the target buys the widget, they will correctly infer that the information provided to the
target is such that the widget is good with probability exactly ;. Hence, Receiver r only
buys if he is less skeptical than the target: o, < 0,. Instead, if non-targeted receivers
observe that the target does not buy the widget, they infer that the information provided
to the target is such that the widget is surely bad. Hence, they do not buy.

It is useful to recall from Lemma 4 that the value of targeting receiver r depends on the
potential gains G} (i, p¥) and losses L} (i, p;) from his example. In the case of Bayesian
Persuasion of a skeptical target, P’ (i%,p}) = p/o,, Gi(if,pf) = r — 1, and L:(if,pl) = F.

We can therefore compute the value of choosing a target as follows.

Lemma 7 (The value of a target under Bayesian persuasion). Suppose that communication
takes the form of Bayesian persuasion. In any equilibrium, (t*, {i} }ier, {¢} her, {PF, D" }1er),
Sender’s value E[V,*] of targeting receiver t € R is equal to

1. (If the target is a fan.) the number of fans, F, if o, < p;

2. (If the target is a skeptic.)

. s

/o +m(t—Dp/oy+ (1 —m) F
N 7 - ~~ -

~
Saletot  Power of t's example Sales to fans.

if oy > p.
We can now characterize the set of equilibria. Proposition 3 says that if all skeptical
receivers are excessively skeptical, then Sender optimally chooses to target a fan. The

outcome is equivalent to Sender targeting nobody and only selling the widget to fans.
Otherwise, Sender targets the skeptical receiver with the greatest value.

Proposition 3 (Optimal targeted Bayesian persuasion). Suppose that communication takes
the form of Bayesian persuasion. In any equilibrium, (t*, {i} }ier, {¢} her, {p}, P*, }er):

1. (Only fans equilibrium.) If for all skeptical receivers r,

l+m.(r—1)

17
T a7)

Or > 4
then Sender targets a fan (o} < p) and, along the equilibrium path, each receiver r buys if
and only if he is a fan (o, < p).

2. (Bayesian persuasion of a skeptic.) If there exists a skeptical receiver r such that

14+ m(r—1)

18
e (18)

O <
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then Sender targets a skeptic t* € arg max,cx{p/o¢[1 +m(t — 1)+ (1 — 7)) F'} and, along
the equilibrium path, each non-targeted receiver r buys if and only if either he observes that
t* buys the widget and he is less skeptical than t* (o, < o+) or he does not observe t*’s choice
and he is a fan (o, < p).

Intuitively, Sender avoids receivers who are too skeptical because they are too hard to
persuade. Were they the only receivers, Sender would attempt to persuade them as such
an attempt would not cost Sender any sale. But because Senders has fans, attempting to
persuade skeptical receivers carries the cost of losing some sales to fans if the fans observe
the negative example of skeptical targets. If skeptical receivers are very skeptical, then
this cost is very likely to materialize as Sender is unlikely to persuade them. Therefore,
Sender may prefer to avoid targeting skeptical receivers altogether.

What makes a skeptical receiver “not too skeptical” for Sender also depends on the
receiver’s popularity. As we discussed in Proposition 2, greater popularity is a double-
edged sword for Sender and may increase (or decrease) the value of targeting a specific re-
ceiver depending on the equilibrium expected gains and losses from his example. Corol-
lary 1 precisely pins down, for the case of Bayesian Persuasion, when the expected gains

from a target’s example outweigh the expected losses from it.

Corollary 1 (The double-edged sword of popularity under Bayesian persuasion). Suppose
that communication takes the form of Bayesian persuasion. In any equilibrium, Sender’s value
E[V/*] of targeting receiver t € R increases with t's popularity, m, if oy < (t — 1)u/F, and
decreases with his popularity if o, > (t — 1)/ F.

Because (18) can hold for o; > (¢t — 1)u/F, Corollary 1 and Proposition 3 imply that a
marginal increase in the popularity of the optimal target may harm Sender. In fact, when
these conditions hold together, an increase in the target’s popularity may induce Sender
to switch to a less popular target or to a fan.

Intuitively, an increase in the target’s popularity entails a trade-off for Sender. On the
one hand, a more popular target raises the probability that, if he is persuaded to buy,
less skeptical (but not fans) receivers are persuaded to buy by his example. On the other
hand, a more popular target also raises the probability that, if he is not persuaded to buy,
fans—who would have bought the widget otherwise—are persuaded not to buy from
observing his example. The first effect arises with probability ;1/0; and affects at most
t — 1 — F skeptic receivers. The second effect arises with probability 1 — ;1/o, and affects
F receivers. Hence, the first effect dominates when the target is less skeptical, when there

are more skeptical receivers less skeptical than he is, or when there are fewer fans.
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6.2 Information disclosure

We now study optimal targeted persuasion when Sender-target communication takes the
form of (generalized) information disclosure a la Milgrom (1981). In this setting, Sender
is endowed with a single information structure and can only choose what to (truthfully)
disclose about the message she observes. Thatis, I = {i}, and, for all mg € M, A(mg) =
{m; € 2™ : mg € m;}. Notice that Sender does not have to communicate all of the
information received, i.e., she can communicate m, # {mgs}. However, she cannot lie
about what she observes, i.e., she must choose m; such that mg € m;. We assume that
i(:]0) has full support.”® Furthermore, for ease of notation, we let M C N and associate
smaller messages to smaller beliefs about the widget being good: mg < mly = Pr(6 =1 |
mg) < Pr(f = 1| mf). As is common in this literature, we focus on the Sender-preferred
equilibrium.

As with Bayesian persuasion, we first characterize the value of a target for Sender. Re-
call by Lemma 3 that, in any equilibrium, the messages Sender observe are partitioned so
that there exists a set of observable message such that: when Sender observes a message
in this set, her optimal communication induces the target to buy; when Sender observes
a message outside of this set, her optimal communication induces the target not to buy.
Lemma 8 precisely characterizes the set of possible equilibrium message partitions under
information disclosure.

Lemma 8 (The optimal information disclosure to a target). Suppose that communication

takes the form of information disclosure and Sender chooses target t € R. Let

_ S Pr(0)i(mslo) = 't s ’
V() =Y CM: = imsl6)

S gy 2o PHO)i(ms]) =

Ot

be the set of subsets Y of messages for Sender (i) containing all messages which, if fully revealed to
the target, would induce him to buy, and (ii) that would induce the target to buy were he to know
only that Sender has observed a message in Y. Take any pair (p*, c*) satisfying (4) and (5). Then,
there exists an equilibrium, (t*, {i} }ier, {¢} beer, {0f, D™ her), with ¢ = ¢* and p; = p* if and
only if there exists Y € Y(t) such that the target buys the widget if and only if Sender observes
mg € Y: forall mg € Y and my such that c¢*(m, | mg) > 0, p*(i,m) > oy; forall mg ¢ Y and
my such that ¢*(m; | mg) > 0, p*(i, m¢) < oy.

Intuitively, for any target’s posterior belief p; (i, m;), messages observed by Sender are nat-

urally divided into two sets: those that allow Sender to communicate a message m; that

That is, for all mg € M, there exists a # € {G, B} in which i(mg|6) > 0.
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induces the target to buy (p.(¢, m:) > o) and those not allowing such a message. Theo-
rem 1 says that whenever Sender observes a message of the first type, she always prefers
to induce the target to buy. Whenever she observes a message of the second type, she
cannot do anything else than induce the target not to buy. Therefore, in any equilibrium,
Sender-target private communication is completely characterized by a set Y of observable
message for Sender that, in equilibrium, result in the target buying the widget.

Lemma 9 (The power of example under information disclosure). Suppose that communica-
tion takes the form of information disclosure and Sender chooses target t € R. ForeachY € Y(t),
let

2 steY Z(mS|G)
2o Pr(0)i(msl0)
2 omggy Ums|G)
229 Pr(0)i(ms|6) -

For any Receiver r # t, in any equilibrium in which, if targeted, t buys the widget if and only if

py(1)=Pr(@ =G |mgeY)= ,and

py(0)=Pr(0 =G |mg¢Y)=

Sender observes mg € Y, r buys the widget if and only if he either: observes that t buys the widget
and o, < py (1), observes that t does not buy the widget and o, < py(0); or he does not observe
t's choice and he is a fan (o, < p).

Intuitively, non-targeted receivers correctly anticipate that, in equilibrium, Sender per-
suades the target to buy if and only if she observes a message in Y. Hence, upon ob-
serving that the target buys the widget, they must conclude that the widget is good with
probability py (1)—and hence they buy if they are not more skeptical than py (1). Instead,
if they observe that he does not buy, they conclude that the widget is good with probabil-
ity py (0)—and hence they buy if they are not more skeptical than py (0).

We can now compute the value of choosing a target.

Lemma 10 (The value of a target under information disclosure). Suppose that communica-
tion takes the form of information disclosure. For each Y € Y(t), let i(Y') be the probability that
Sender observes a message mg € Y. Then in any Sender-preferred equilibrium, Sender’s value
E[V}] of choosing target t € R equals

i(Y) +m (z(y)

r#tior <O} ) + (- m)(F - 1t < F)

{r#t:o. < py(l)}‘—l—
(19)

max
YO a-i)

We can now characterize the set of Sender-preferred equilibria. Intuitively, only two types

of equilibria may arise. First, Sender may choose a target and communicate with him so
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that the target either buys or does not buy with certainty (Y € {0, M}). In this case,
the target’s example bears no information to other receivers and we have an only fans
equilibrium: a receiver buys if and only if he is a fan.

Second, Sender may choose a target and communicate with him in such a way that
the target buys the widget with probability strictly between 0 and 1 (Y ¢ {0, M })—i.e., an
informative example equilibrium. Lemma 11 says that, in any such equilibrium, the target’s
positive example is strong enough to persuade at least one skeptic to buy. Notably, the
target himself may not be a skeptic. That is, unlike in Bayesian Persuasion (see Part 2 of
Proposition 3), Sender may now target a receiver with the aim of indirectly persuading
receivers that are more skeptical than the target.

Lemma 11 (Sender aims to persuade skeptics). Suppose that communication takes the form of
information disclosure. In any informative example Sender-preferred equilibrium in which Sender
targets t* € R, t* buys the widget if and only if Sender observes mg € Y ¢ {(), M'}. Moreover,
there exists a skeptical receiver r > t* that buys the widget upon observing that the target does so:

pr(t* 1) =py(1) 2 0.

Proposition 4 says that if all receivers are excessively skeptical, then Sender optimally
chooses to sell only to fans. Otherwise, Sender chooses a target—but not necessarily a
skeptical target—and communicates with him in such a way that the target’s positive

example suffices to compel at least one skeptical receiver to buy the widget.

Proposition 4 (Optimal targeted information disclosure). Suppose that communication takes
the form of information disclosure. In equilibrium:

1. (Only fans equilibrium.) If for all receivers t € R and allY € Y(t) NU,~pY (1),

—1I[r < F] —i(Y)

Ur;

I £t 00 < pr(DH + (1— i) [{r #1t:0, < pyr(0)}] > =

(20)
then, along the equilibrium path, each receiver ', including the target, buys if and only if he
isa fan (o, < p).

2. (Disclosure to persuade a skeptic.) If there exists a receiver t € R and Y € Y(t) N
U,~p Y(r) such that

N £t 00 < oy} + (1— iV N[{r £ ¢ : 0r < py(0)}] > L 2r S F1 =)

t (21)
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then there exists a skeptic 7 > F and a fan r < F such that, along the equilibrium path,
the target t* buys if and only if the sender observes mg € Y, and each non-targeted receiver
r’" buys if and only if either he observes that t* buys the widget and he is less skeptical than
7 (0, < 07), he observes that t* does not buy the widget and he is less skeptical than r

(0, < a,), or he does not observe t*’s choice and he is a fan (o, < p).

Corollary 2 characterizes the double-edged sword of popularity (Proposition 2) when

Sender-target communication takes the form of information disclosure.

Corollary 2 (The double-edged sword of popularity under information disclosure). Sup-
pose that communication takes the form of information disclosure. In any equilibrium, Sender’s
value E[V,*] of targeting receiver t € R increases with his popularity m, if

min {z’(Y)|{r Ltio, <py(DY+ (L —iY){r £t:0, < py(O)}|} > F — 1]t < F),

and decreases with his popularity if

i {z’(Y)Hr Atio <pr(DH+ 1 —iV){r #1:0, < py<o>}|} <F-1t<F]
The main difference between optimal targeted persuasion when communication takes the
form of Bayesian persuasion or information disclosure is that, under information disclo-
sure, Sender may choose a target and communicate with him so that the target’s positive
example compels even more skeptical receivers to buy. In contrast, under Bayesian per-
suasion, Theorem 1 implies that Sender can never persuade a more skeptical receiver than
the target to buy the widget. We now explore the intuition behind this difference and its

implications.

6.3 Comparing Bayesian persuasion and information disclosure

We now compare Sender’s payoff when communication takes the form of Bayesian Per-
suasion to when it takes the form of information disclosure. It may seem intuitive that
Sender always prefers Bayesian persuasion because this communication protocol affords
Sender the flexibility of choosing the information structure, i;. Thus, Sender has greater
freedom in choosing how to persuade the target. However, we show that this is not nec-
essarily the case in our setting.

Under Bayesian persuasion, Sender optimally chooses both the information structure
i; and what to communicates to the target, and both are privately observed only by Sender
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and the target, but not by other receivers. Sender’s objective is to persuade as many re-
ceivers as possible. Therefore, ideally, Sender would choose a very popular target and
commit to an information structure that maximizes the power of his example. How-
evet, as discussed in Section 3, the Example-unraveling Theorem establishes that, in equi-
librium, such a plan unravels. This is because holding fixed the equilibrium beliefs of
non-targeted receivers, Sender strictly prefers to deviate to the information structure that
maximizes the equilibrium probability that the target buys, so that a positive example will
induce to buy only receivers less skeptical than the target and a negative example would
induce even fans not to buy (see Lemma 6). Therefore, sometimes Sender may prefer to
target a less popular receiver, or even a fan.

In contrast, when communication takes the form of information disclosure, Sender is
committed to the only information structure available to her. Thus, even though they
know Sender will maximize the probability that the target buys, other receivers do not
need to conjecture what information structure was chosen by Sender—she must have
used the only one available to her. It follows that a target’s positive example induces
non-targeted receivers to hold beliefs that are, generically, greater than the target’s exact
skepticism, thus compelling even receivers more skeptical than he is to buy. Therefore,
in equilibrium, because Sender is less free to choose how to communicate to the target,
Sender is more free to optimally choose a target who is more popular and therefore whose
example may persuade more receivers to buy.

Proposition 5 gives sufficient conditions for the existence of an information disclosure
structure i such that Sender’s expected payoff is greater under information disclosure

than under Bayesian persuasion.

Proposition 5 (When Sender strictly prefers information disclosure). Suppose that under
Bayesian persuasion Sender optimally targets a skeptical receiver t. If

1. oy < (t—1)p/F, so that a marginal increase in t’s popularity strictly increases the Sender’s
value of choosing t, and

2. there exists a skeptical Receiver r < t with 7, > m, so that r is strictly more popular than t,

then there exists an information structure i such that Sender’s equilibrium expected payoff under
information disclosure with I = {i} is strictly greater than her equilibrium expected payoff under

Bayesian persuasion.

We illustrate this result in an example with three receivers.
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Example 1 (Sender strictly prefers information disclosure). Suppose F' = 1 and R = 3, so
there is exactly one fan and two skeptics, M = {0, 1}, so the message space is binary, and

o > T3; (22)
O_ﬂ(1+27r3)—|—(1—7r3) zmax{l,aﬂ(1+7rg)+(1—7rg)}; (23)
3 2
LY (24)
03 2

Notice that equation (22) says that the less skeptical Receiver 2 is more popular than the more
skeptical Receiver 3. Equation (23) says that, under Bayesian persuasion, the value of targeting
Receiver 3 is greater than the value of targeting Receiver 2 or the value of targeting the only fan.
Equation (24) says that (by Corollary 1) a marginal increase in Receiver 3's popularity would
increase Sender’s value of targeting him.

Finally, suppose that, under information disclosure, Sender is endowed with i = i* such that
i*(0|G) =0, *(1|G) =1, and
p(1 — o)
(1 —p)oy

Bayesian persuasion. Suppose communication takes the form of Bayesian Persuasion. By Lemma 7

i*(1)B) =

and (23), Sender optimally targets the most skeptical Receiver 3, and her expected payoff is

P14 2m) + (1 — 7). (25)
o3

Notice that in this case Sender optimally chooses i3 = 1*.

Information disclosure. Suppose communication takes the form of information disclosure. It
is straightforward to see that Sender can target Receiver 3, optimally communicate with
him under i*, and expect the same payoff as under Bayesian persuasion. However, we now
show that Sender can target the less skeptical—but more popular—Receiver 2, and expect a
greater payoff.

To see this, suppose Sender chooses t = 2. By Lemma 8, in the unique (continuation-game)
equilibrium the target buys the widget if and only if Sender observes mg = 1. Furthermore,
by Lemma 10, Sender’s (continuation-equilibrium) expected payoff is given by

ﬂ(1—1—27T2)+(1—7r2) > ﬁ(1+27r3)—|—(1—773) (26)
03 03

where the last inequality follows from (22) and (24).

The key to the example is that, because Sender can credibly commit to use i*, under
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information disclosure she can, by targeting Receiver 2, also persuade receiver r = 3 if he
observes 2’s example.'® In contrast, under Bayesian persuasion, by targeting Receiver 2,
Sender is giving up any chance to persuade the more skeptical Receiver 3. The only way
to persuade both is to target Receiver 3 and hope that Receiver 2 will observe 3’s example.
But because Receiver 2 is more popular than Receiver 3, all else equal it is more likely
that Receiver 3 will observe 2’s example than vice versa. Thus, the extra opportunity
of targeting 2 and affect 3 via the example afforded by information disclosure increases
Sender’s equilibrium payoff. Finally, it is instructive to notice that this result crucially

depends on popularity being a positive feature of a target (i.e., it relies on (24)).

7 Conclusions

When choosing who to target in networking activities, salespersons, entrepreneurs, or
lobbyists need to anticipate how persuading a target will affect other potential customers,
investors, or politicians. Our Example-unraveling theorem allows us to characterize op-
timal targeted persuasion independently of the specific assumptions about how the com-
munication with a target takes place. An implication of this result captures the intuitive
idea that the popularity of a target is a double-edged sword for Sender. We showed how
to employ these result to characterize the optimal choice of target under two canonical
communication models: Bayesian persuasion and (generalized) information disclosure.
As discussed in Section 5, these results extend to a broad class of models, including when
Sender is informed before choosing the target or when Sender can choose many targets
or when the choice of target is only revealed through his example.'”

One of our key results is that the popularity of a target is a double-edged sword. Thus,
the optimal target may not be the customer or investor with the greatest visibility among
other customers or investors. However, when popularity positively affects the value of
a target, we showed that Sender may benefit from communication forms that afford her
less flexibility but allow her to more freely choose who to target based on their popularity.
Thus, for example, when hard information is produced independently of her choice, a
startup entrepreneur will more likely optimally target a very popular investor—an “in-
fluencer” with great visibility among other investors. In contrast, when hard informa-

tion is produced through experiments and demonstrations designed by her, a startup

6By a continuity argument, this holds even for information structures “close” to i*.

7Nevertheless, we note that our result crucially hinges on the assumption that receivers have common
values in the sense that all prefer buying a good widget over not buying any widget and prefer both over
buying a bad widget. Violating this assumption “inverts” the meaning of the target’s example and therefore
Sender may not prefer to maximize the probability that the target buys.
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entrepreneur will more likely base her targeting choice on the target’s skepticism, even at
the expense of losing some visibility among other potential investors.
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A Appendix: Proofs

Proof of Lemma 1. Let (t*, {i} hier, {¢} }ier, {p;, D"+ }ter) be an equilibrium and ¢ be any re-
ceiver. If ¢ is targeted by Sender, then, by (2), for any receiver r # ¢,

Zrzt(gA(T);i): UsteM Z‘;fk(WLSw = G)Ct(mt | mS)
pr(t]1) = S -
th(EA(Wgs)I Zae{G,B} Pr(6) ZmSeM it (ms|@)ce(my [ ms)
pi (it,me) >0t
y Zee G,B} Pr(0) steM it (ms|@)ei(my | ms)
= > ({pilim) x . .
Y micA(ms): ZGG{G,B} Pr(6) ZmSEM it (ms|6)ce(my | ms)

;?t(letflﬂ(%:rgsz)cft pi (it,me) >0t
> Z (U X Z@G{G,B} Pr(@) steM Zr(m5|9)0t(mt | ms) )
= t .

mi€A(mg): thGA(ms): ZGE{C{B} PI‘(Q) ZmSGM (N (msye)ct(mt ’ mS)

pf (itymt)>at p; (immt)zat

= Ot,

where the inequality holds because, conditional on observing message m;, if t buys, then

his posterior belief satisfies pj (i;, m:) > o;. Similarly, by (2),

theA(ms): /’LZmSGM Z:(ms|0 = G)Ct(mt | mS)
p*(t | O) _ p; (it,me) <oy
' th(GA(ﬂ”;s)i Zee{G’,B} Pr(0) steM if (ms|@)cy(my | ms)
py (it,mt) <ot
B Zee{G’,B} Pr(0) ZmSeM it (ms|0)ci(my | ms)

- p* i ;M ) X ) * )
Z ( e, me 2omicA(ms): 2upeic,py PTO0) Zngenr 1 (ms|O)c(my | ms)

my€A(mg): A
p: (it,mt)<0t e (Zt:mt)<0't

< oy

where the inequality holds because, conditional on observing message m;, if ¢ does not
buy, then his posterior belief satisfies p; (i;,m;) < o,. Combining these two results yields
p(t]1) = pi(t | 0). =

Proof of Lemma 2. Let (t*, {if lier, {c] }rer. {Pf, P*1 ter) be an equilibrium and ¢ € R be
any receiver. Notice that (9) is satisfied if and only if p!(¢ | 1) > pi(¢ | 0). By Lemma 1, this
is satisfied for all r # t. O

Proof of Theorem 1. Let (t*, {i} }ier, {¢ }ter, {Df, P*, }1er) be an equilibrium and ¢ € R be
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any receiver. We will show that

argmax Vy(m, p;, p*,) C argmax 1[p; (iy,m) > oy]. (27)
meA(mg) meA(ms)
If so, by (7), we conclude that (11) holds; by (6), we conclude that (10) holds.

There are two cases to consider. First, suppose that, for all mg € supp(i;(:|0)) and
my € A(mg), p; (ir, m;) < or. Then every message induces the same action from the target.
Hence, the left and right hand sides of (27) coincide.

Second, suppose that there exists at least one g € supp(i;(-|¢)) and ™, € A(mg) for
which p; (i, m;) > 0. Take any m; € arg max,,c 4mq) Vi(m, pf, p*,). Then,

W(mt7p:7p*—t)_‘/%(mtap:’ pit) -

= (Lp; (i, me) = 0¢) — Lp; (57, M) > 04]) (1 + Zﬁtﬂ[p:(t 1) > Ur])

r#t

+ (U[p; (i, me) < o) = L[p; (i, ) < oa]) Y m A [pi(t | 0) > o]
r#t

= (1[p; (ir, M) > o] — 1) (1 + ) mApi(t] 1) > ar]>

r#t
+ ﬂ[p:(z:’mt) < Ut] Zﬂtﬂ[p:(t | 0) Z 0’,,.]
r#t
> 1p; (ir, me) > 04 — 1
+ (L[p; (i, my) > oy] + L[p; (i, my) < 0] — 1) Zﬂ—tﬂ[p:@ 10) > 0,]
r#£t
= 1pj (i, my) > o] — 1,

where the inequality on the second last line holds as, by Lemma 2, 1[pi(t | 1) > o,] >
L[pi(t | 0) > o,]. Since the last term must be positive, p;(i;,m;) > o holds. Therefore,
My € argMaxX,,e amg) Lpr(t | 1) > o). O

Proof of Proposition 1. Let (t*, {i} }ier, {¢} }ier, {P}. P*: }ter) be an equilibrium. If ¢* buys
upon observing message m; (respectively, does not buy), then p;«(i}., ms) > o4 (respec-
tively, py« (i}, my) < 04+). Note first that, for any r # t*, the posterior belief p}(¢* | 1) (re-
spectively, pX(t* | 0)) conditional on observing the target buying (respectively, not buying)
equals t*’s average posterior belief across all messages inducing him to buy (respectively,
not buy). Therefore, p!(t* | 1) > p > pi(t* | 0).

We divide the proof in two complementary cases. First, suppose that t* buys with
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probability 1 or 0. By the law of iterated expectations, the average posterior over all
messages equals the prior ;. Therefore, we have that ¢* buys if and only if he is a fan.
Furthermore, p;:(t* | 1) = pi(t* | 0) = pi(t* | 0) = p, so that receiver r buys if and only if he
is a fan. This is an only fans equilibrium. Second, suppose that t* buys with probability
P € (0,1). Using (1)-(3), we have pi(t* | 1) > p > pi(t* | 0). This is an informative
example equilibrium. O

Proof of Lemma 3. Let (t*, {i} hier, {¢} }ter, {p;, P* }ter) be an equilibrium and ¢ € R be
any receiver. Let Y,*(i;, p; ) denote the subset of messages in A/ drawn with positive prob-
ability under i; for which there is an allowable message that persuades the target to buy
under belief p;:
Vo) = {ms € a0 ;"SI HnSBL 0> 0, and
Imy € A(mg) s.t. pe(if, my) > oy

By Theorem 1, for all mg € Y;*(i},p;), in equilibrium, when she observes mg, any mes-
sage that Sender sends to ¢ with positive probability persuades the target to buy. Thus,
the target buys with probability 1 conditional on Sender observing any such mg. Fur-
thermore, for all mg ¢ Y;*(i},p;), either Sender never observes the message under i}, or
Sender observes the message, but there exists no message Sender can send to the target
to persuade the target to buy. Hence, the target buys with probability zero conditional on
Sender observing any such myg. O

Proof of Lemma 4. Let (t*,{i} }+er, {¢} }ter, {p}, D", }ter) be an equilibrium and ¢t € R any
receiver. If Sender targets ¢, then conditional on not observing ¢’s action, F; non-targeted
receivers buy the widget. Conditional on observing t’s action, if receiver ¢ buys and a non-
target receiver r # t observes receiver ¢t buy (with probability ), receiver r’s posterior is
Pr(60 = G|mg € Y *(if,p;),i;). Hence, the non-target receiver buys if and only if Pr(f =
G|mg € Y *(if,p;),i;) > o,. An analogous argument implies that conditional on observing
the target receiver not buy, a non-targeted receiver r buys if and only if Pr(f = G|mg ¢
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Y *(i;, p;), ;) > o,. Hence, Sender’s value from targeting receiver r is

E[V;*(if, pi)] = Pl (iy, py) X ) ' i* o x
tmx [{r £t Pr(B = Glms € Vi (i, 1), i) > o7}
el w x 1+(1—m) x F
(L= P(isp) % Ctwlemxh
+m x [{r#t: Pr(0 = Glms & Y/ (i, p}), i) = 0}

= P, pe) U+ m( GGy pp)) — (U= PG, pp)) L (45 pr)
where the second equality holds as

{r #t: Pr(0 = Glms € Y (it,p;), 1) = 0, }| = Fy = Gi (i3, pr)
Fy = [{r #t:Pr(0 = Glms ¢ Y/ (i7, 1), %) = ov}| = Ly (i, pt) H

Proof of Proposition 2. Follows immediately from Lemma 4 and noting that, by Theorem 1,
the equilibrium quantities P} (i}, p;), G; (iy,p;), L} (i}, p;), and F; do not depend on ;. [

Proof of Lemma 5. Let (t*, {i; }ter, {¢] her, {p}. P*, }ter) be an equilibrium and ¢ € R any
receiver. Under Bayesian persuasion, Sender must truthfully communicate whichever
message is observed under their chosen information structure i; € /. Hence conditional
on Sender observing a message mg € M, the target’s posterior belief coincides with the
Sender’s posterior belief. This implies that Sender’s problem can be reduced to choosing
a distribution over posterior beliefs, where the Sender’s payoff conditional on posterior
belief ¢ is given by 1[q > 0;]. By Kamenica and Gentzkow (2011), the maximum payoff the
Sender can achieve is equal to the concavification of 1[¢ > o;| evaluated at the prior belief
p, which is min{1, £}, and that this can be achieved if Sender can choose an information
structure with at least two messages. That the Sender in our setting indeed has access to
at least two messages completes our proof. O

Proof of Lemma 6. Let (t*, {i; }ter, {¢ }ter, {p}. P*, }ter) be an equilibrium and ¢ € R any
receiver. Recall by Lemma 5 that the Sender’s payoff is achieved by the concavification of
1[g > oy] evaluated at the prior belief 1. Any information structure i; which achieves this
must have the following properties.

1. The set of messages that Sender observes under i; with strictly positive probability
can be divided into two: 2 = M; U M,, where M; N M, = 0.
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2. For all mg € M,, if(ms|G) = 0, so the target (and Sender) is certain the quality is

bad under mg.

3. For all mg € M;, the posterior induced p; (i}, {mg}) satisfies pj (i;, {ms}) > o, and

ST Y bl {ms))it(ms|0) Pr(6) = min{yr, 00},

0e{G,B} mgeM

so the target always has a belief of at least o, that the quality is good upon observing

mg € M, and his average belief coincides with min{y, o;}.

By (1) and (2), a non-target receiver r’s beliefs that the widget is good conditional on
observing that the target buys (o, = 1) and does not buy (o, = 0) are, respectively, p}(t |
1) = min{y, 0.} and pi(¢ | 0) = 0. Parts 1 and 2 of Lemma 6 are then easily verified by
comparing pi(t | 1) and pi(¢ | 0) and pi(¢ | 0) against r’s level of skepticism o,. O

Proof of Lemma 7. Let (t*,{i; }ier, {¢] }ier, {p}, D" }1er) be an equilibrium and ¢t € R any
receiver. First, suppose ¢ is a fan. By Lemma 5, in the continuation equilibrium where ¢
is targeted, ¢ buys the widget with probability 1, and by Lemma 6 non-targeted receivers
r # t with 0, < p buy the widget. So the value V,(my, pf, p*,) to the Sender must be
1+ (F — 1) = F for any message m; sent with positive probability in equilibrium, and it
follows that E[V;] = F.

Now suppose t is a skeptic. By Lemma 5, the target buys the widget with probability
w/oe, and, by Lemma 6, each non-targeted receiver r # ¢ buys the widget either if they
observe that ¢ buys the widget and o, < oy, or if they do not observe that ¢ buys the
widget and o, < p. In particular, pi(¢ | 1) = oy and pi(¢ | 0) = 0. So the expected value,
E[V;(my, pf, p*,)], to the Sender is

E[V,(mq, pt, p,)] = Uﬁt (1+m(t—1—F)+F)+ (1 - i) (1—m)F
L P () Famt—1)+ (1 —m)F — L —m)F
O¢ O¢ O¢
2 -l -mF
O¢ O¢
as claimed. O

Proof of Proposition 3. By Lemma 7, Sender weakly prefers targeting skeptic » over every
fan if and only if p/o, + m.(r — 1)p/oy + (1 — 7,)F > F. Rearranging this yields o, <
u(l + m.(r — 1))/m.F. Hence: if (17) holds for all » > F, then Sender strictly prefers
targeting some fan over every skeptic; if (18) holds for at least one r > [, then Sender
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prefers targeting some skeptic over every fan. The remainder of the proposition then
follows directly from Lemma 6. O

Proof of Corollary 1. Take any receiver ¢t € R. If ¢ is a fan, then V, = F, which is constant
in 7. If ¢ is a skeptic, then by Lemma 7, V; = p/oy + w(t — 1)p/oy + (1 — m) F', which is
increasing in 7, if and only if o, < (t — 1)/ F. O

Proof of Lemma 8. We prove necessity and sufficiency separately.

Necessity: Let (t*, {i; hier, {c] her, {Pf, P*, }ter) be any equilibrium with ¢f = ¢* and
p; = p*,and t € R any receiver. Let Y = {mg : Imr € A(mg)s.t. ¢*(mr|mg) >
0 and p*(i,m;) > 0.} denote the set of messages received by the Sender in which, con-
ditional on targeting ¢, Sender persuades ¢ to buy the widget with positive probability.

First, we claim that ¢ buys the widget if and only if Sender observes mg € Y. This holds
because, by the Example-unraveling Theorem, if the Sender observes some mg € Y, so
there exists a message that Sender could send which persuades the target to buy, then
every message sent by the Sender must persuade the target to buy.

Second, we claim that Y € Y(¢). Because {m/} ¢ A(mg) for all m'y # mg, we have
p(i, {ms}) = pi(ms|G)/(S, Pr(6)i(ms|6)). Hence, if ji(ms|G)/ (X, Pr(9)i(ms|6)) > o,
so fully revealing the message to the target would persuade the target to buy the widget,
then mg € Y. Furthermore, since for all mg € Y and my € A(mg), ¢*(mr|ms) > 0 implies

p*(l7 mt) 2 Oty
1D omgen Hms|G)

>, Pr(0)i(ms|6)
) e\ uimsIG) + (1= pi(ms|B)
= 3 (32 sitemactmims ) BSOS

mg€EM miEMr

> 0y

as required. ]

Sufficiency: Take any Y € V*(¢) such that, for all mg € Y and my such that ¢*(m, | mg) >
0, p*(i,m;) > o4; and for all mg ¢ Y and m, such that ¢*(m, | mg) > 0, p*(i,m;) < oy.
Now consider the quadruple (t*, {7} }ier, {¢} }ter, {P}, P, }er) defined as follows:

1. For receiver t, if = i, ¢; = ¢*, p; = p* and p*, is defined by (1), (2) and (3) using
(p", ).

2. For receiver r # t, take any Y, € Y(r). Then, let i} = i, p} be defined such that if
ms € Y, (mg ¢ Y;), then p,(mg|B) is the expected posterior of Sender conditional
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on observing a message in Y, (not in Y;), c; be defined such that for all mg € Y,
ci(Y|mg) = 1 while for all mg ¢ Y, c:({ms}|ms) = 1, and p*, are defined by (4), (1),
(2) and (3) using (p7, c5).

3. t* is defined by (8) using the previously defined quantities.

Notice here that for any non-targeted receiver r # ¢, Sender’s reporting strategy and the
target’s belief are defined in an analogous way to that for receiver ¢. Hence, to verify that
(t*, {1} her, {¢ ber, {PF, D™ }1er) constitutes an equilibrium, it suffices to show that for all
mg € M and each m; € A(mg), Sender’s reporting strategy for receiver ¢, c;, satisfies (7).
To see this, take any such m; in which ¢*(mg|m;) > 0. If mg € Y, then p*(i,m;) > o so
sending the message maximizes the probability the target buys. By a similar argument to
Lemma 2, sending the message also maximizes the probability the target buys. We thus
conclude that (7) holds. O

Proof of Lemma 9. Let (t*, {i} hier, {¢] her, {P}, P, }ter) be any equilibrium and ¢ € R any
receiver. By (1) and (2), we see that for any non-target receiver r # t, pi(t | 1) = py (1) and
pi(t | 0) = py(0). The claims in Lemma 9 are then easily verified by comparing p}(t | 1)
and p;(t | 0) and p;(t | 0) against a non-target r’s level of skepticism o,. O

Proof of Lemma 10. Take any receiver t € R. By Lemma 8, every equilibrium in which
Sender targets ¢ can be associated to some Y € )(t) and vice versa, and under any equi-
librium associated to Y, the target buys if and only if Sender observes mg € Y. This means
that ¢ buys the widget with probability i(Y). Furthermore, by Lemma 9, the set of non-
targets who buy upon observing the target take action a; € {0,1}is {r #t : oy < py(ar)},
while the number of fans who buy upon not observing the target is F' — 1|t < F|. Thus,
the expected payoff from sales to non-targeted receivers is

(i) # 500 (O} + (= 80D #4500 < pr(D)]) + (L= m)(F e < 7).

Adding these expressions together then yields the term inside the max operator of (19).
Since Sender’s payoff in the Sender-preferred equilibrium must be the maximum of these

terms across all Y € )(t), this payoff is equal to (19). O

Proof of Lemma 11. Take any receiver ¢t € R. First, suppose ¢ is a skeptic. Then for all
Y € Y(t) in which Y # (), py (1) > o,. Hence, the claim holds.
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Next, suppose ¢ is a fan. Take any Y € Y(t) in which Y # {0, M} and for all skeptics
r > F, py(1) < o, holds. Then, Sender’s equilibrium payoff is equal to

oY)+, (zm{r Ao, <pr(D}+ (L —iY){r #£t:o, < py<o>})

<i(Y) + m (Z(Y)(F -1+ (1—iY))(F - 1))

<14+ m(F—1)
<F.

The first inequality holds because, since no skeptic receiver buys upon observing that ¢
buys, there is at most F'—1 other receivers who buy upon observing ¢’s action. The second
(strict) inequality holds because, since Y # {0}, M}, t buys with strictly interior probability.
The final inequality holds as t’s popularity is bounded above by 1. Hence, Sender is
strictly better off in the equilibrium in which ¢ always buys. L.e.,, when Y = M. O

Proof of Proposition 4. By Proposition 1, Sender’s (Sender-preferred) equilibrium payoff
under information disclosure across all targets is the maximum of the payoff across all
only fans equilibria and informative example equilibria. The payoff in any only-fans
equilibrium is F. To compute the maximum payoff across all informative example equi-
librium, we start by fixing a receiver t € R. Among all informative example equilibria in
which ¢ is targeted, Lemma 11 says that the sender-preferred one is the one with Y being
maximum among all Y € Y(¢) in which the target’s example is strong enough to convince
some skeptic to buy, i.e., Y € U,~rY(r). Thus, the payoff from (ii) is

i(Y)

[t Spy<1>}\+
Z(Y) +
max o omax Q=i #¢: 0 < py(0)

(1= m)(F — 1]t < F))

‘ " (28)

Thus, if (20) holds, so that (28) is strictly less than F, the equilibrium is as described by
Part 1 of Proposition 4. Analogously, if (21)) holds, so that (28) is strictly greater than F,
then the equilibrium is as described by Part 2 of Proposition 4. O

Proof of Corollary 2. Take any equilibrium (t*, {3} }+er, {¢] hier, {p;. P, }ter) and let t € R
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be any receiver. By Lemma 10, Sender’s equilibrium expected payoff of targeting ¢ is

i(Y) +m (i(Y)

frst:on < py(O)} ) F (- m)(F -1}t < F))

{r#t:o, < py(l)}‘+
O i)

Hence a sufficient condition for Sender’s payoff to be increasing in ; is for

0 <z’(Y)

rtio < py<1>}] i)

{r#t:.o. < py(O)}D —m(F —1[t < F])
(29)

to be increasing in 7, for all choices of Y. That is, (differentiating with respect to 7,):

(z'(Y)

Since this must hold for all Y, it suffices that it holds for the minimum, and rearranging

[ritio < py<1>}\ i)

(r#tio < prlO)]) - (F- 1< F) 20

gives the expression in Corollary 2. Similarly, if the maximum slope of (29) is < 0, then

the value of the target is decreasing with his popularity, as claimed. O

Proof of Proposition 5. First, notice that, by Lemma 7, Sender’s value under Bayesian Per-
suasion of targeting ¢ is pu/oy + m(t — V)p/oy + (1 — mp) F.

Take any message m, € M. Consider the information structure ¢ defined as follows:
i(molG) = 1, 1(mo| B) = (u(1—0v))/(1=p)o), i(ms| B) = (1= (u(1—0))/(1—=p)ow)) /(|M |-
1) for mg # my. Since receiver r is less skeptical than the target ¢, {m,} € Y(r). Hence, by
Lemma 10, under information disclosure, if Sender is endowed with information struc-

ture ¢, then Sender’s preferred equilibrium payoff of targeting r is at least

i({mo}) + . (z<{mo}>|{r’ L1 0y < ppmg (DY + (1= i({ma))|{F £ 0 < py<1>}|)
- m)(F -1 < F)

= pfor +m(t —Dp/oy + (1 —m)F

> plog+m(t — Doy + (1 — 7)) F

> ufoy+m(t —Dp/op+ (1 —m) F,

where the first inequality holds as 7 is less skeptical than ¢, and the second as r is strictly
more popular than ¢ and o, < (¢t — 1)u/F. Thus, Sender is strictly better off under infor-

mation disclosure than under Bayesian persuasion. O
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B Nonlinear Sender’s payoff and complementarities

Set-up. Suppose now that receiver i’s payoff from buying now depends on other re-
ceivers’ actions a_; = (a;),., where a; = 1 and a; = 0 denote receiver j buying and not
buying respectively, and is given by u;(a_;, ). We assume that w;(a_;, G) > w;(a_;, B),
so a receiver has a stronger incentive to buy when the widget is good over bad, and that
u;(a_;, 0) is non-decreasing in a_;, so a receiver’s incentive to buy is increasing in the num-
ber of other receivers who buy. We further assume that Sender’s payoff given receivers’

actions a = (a;)¥, is equal to v(a), which is strictly increasing in a.

Equilibrium. With strategic complementarities, a receiver’s purchase decision depends
not only on her first-order beliefs about ¢, but also on her higher-order beliefs about how
others act. We extend the definition of an equilibrium to accommodate for the latter.

Formally, an equilibrium is a tuple {(¢*, i}, ¢f, p;, p*,, a;, a*,) }1er under which

1. For each target t € R, the posteriors of non-targets r» # ¢ about the state and the
target’s action (p; (¢, 01))r-£t,0,{0,1,01, Where pZ(o,,t) € A({G, B} x {0,1}) is the poste-
rior given observation o, € {0, 1,0}, is derived using Bayes’ rule, Sender’s strategy,
and the target’s strategy. Formally, this requires that if o, € {0, 1}, so the non-target
observes the target’s action o,, then the target’s belief that the target’s action is a,
and the quality is 6 is

thGA(mS) : ,u(G) zmsel\/l Z: (ms‘e)cf (mt‘ms)
aj (m¢)=at

2micA(mg): 220e{G,BY MO) 2 genr i (mslO)c; (me|ms)’ =0 (30)

aj(my)=ay

p:(ata 9“7 Or) =
0, a; # oy

Otherwise, i.e., o, = 0, so the receiver observes nothing, then

pras Ot 0) = Y u(0) Y ii(mslO)c;(me | ms),  V(a,6).  (31)

mi€EA(mg): mgsEM
aj (m¢)=ay

2. Foreach targett € R, non-target receivers’ play the largest continuation Bayes-Nash



equilibrium induced by the Sender targeting ¢. That is, let A ((p;:(t, 0¢))r£t,0,c10,1,0})
denote the set of Bayes-Nash equilibrium from targeting ¢. That is, the collection of
strategies (a,(t)),, where a,(o,,t) is the strategy of non-target r given observation

or, that satisfy the following

(OT’t) € argmaxa, Z Z (Ur g, A rt(O )),«9)) Qr(o—t,r|at)p:(gt>9’t70t)7 (32)

ar€{0,1} (@0,0) 0—rt

vor,t € {07 17 @},t 7& r,

where o_,; = (0,/)2rt € {0, 1, 0}£=2 denote a vector of observations for non-r non-
targets, and Q. (-|a;) € A{a;,0}772 is the distribution over non-r non-targets’ obser-
vations conditional on the target choosing action a;.'® Then, non-targets’ strategies
(ax(t))rze is the largest element of A ((pi(t,0r))r£t0.c10,1,0y). Because the game be-
tween non-targets is supermodular, the results of Milgrom & Roberts (1990) imply

that such an element exists and is unique.

3. For each target t € R, his posterior p; is derived using Bayes’ rule and Sender’s
strategy. That is, it satisfies conditions (4) and (5) in the main text.

4. For each target t € R, his strategy a; is the largest strategy which maximizes his
payoff given the equilibrium played by non-targets (a}(¢)),. and his own belief p;.
That is, for all m; Sender communicates with positive probability, letting Q:(-|a;) €
{a;,0}7~! denote the distribution over non-targets’ observations o_; = (0,.),« con-

ditional on the target choosing action a,

ay(my) = maxargmaxatht G\mt)Zu((at,a J(0_4|t), 8)Qi(0—¢|ay). (33)

CLtE{O 1} ot

5. For each target t € R, Sender’s choice of information structure i; and communi-
cation strategy c; are optimal given the posterior beliefs of the target p;, and of

non-targeted receivers p*,. That is,

i € arg max Y oul0)) ilms|o) Y ci(milms) Y v((a;(me), a”,(o-i]t))Qelo—a; (my))

(34)

8This is the binominal distribution generated by a success probability, i.e., observing a;, of 7;. We may
also think of @, (-|a;) as a distribution over {0, 1, 0} which assigns probability zero to the single observation

O 7£ ag, @
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and, for each observed message mgs € supp(i;(-|¢)) and each allowable message
my € A(msg),

c; (m¢lmg) > 0 = m; € argmax Z (ay(my),a”,(0—¢|t))Qt(0—¢|a; (my)). (35)

miEA(mg) o,
Example Unravelling Theorem. We now work towards proving the Example Unravel-
ling Theorem.

We begin by establishing an analogue to Lemma 1—The Power of Examples—in the
main text. It says that for each non-target receiver, their belief that the quality is high is

higher conditional on observing the target buy than not buy.

Lemma 1B (The power of examples). In any equilibrium {(t*, i}, ¢}, p;, p*,, af, a*,) hier and
for each receiver t € R, if Sender targets t, then receiver r’s posterior belief is greater when he
observes that t buys the widget than when he observes that t does not: for all v # t, pi(1,G|t, 1) >
Py (0, Gt 1).

Proof. To prove this claim, we will show that the target’s strategy has a single-crossing
property: there exists p € [0, 1] such that a;(m,) = 1 if pj(m:) > p, and a;(m;) = 0
otherwise. Equilibrium consistency;, i.e., equation (30), then implies the claim.

Take any message m; under which a;(m;) = 1, and any message m; under which
p;i(m}) > p;(my). Then,

S0 S (o o090
> Zpt (0]my) Z ((ar, aZ,(0-4[t),0)Qi(0—4[1) > 0O

where the first inequality holds as u((at,a_, G) > ui(a_y, B) for all a_;, and the second
inequality holds as, by the definition of an equilibrium, the target’s expected payoff from
buying under message m; must be non-negative. By (33), this means a; (m;) = 1. O

Next, given a set of strategies (a,(t)), for non-targets and a targets” action a, let
Fi(‘lat, (ar(t))r2:) denote the distribution over non-targets” actions (a, ), € A_; condi-
tional on the target taking action a,. This is defined by

Fy((ar)rzilas, (ar(t))re)) = Qi({0r 1 ar(0n|t) = a,Vr # t}ay). (36)

The next result — an analogue to Lemma 2 from the main text — says that the distribu-

tion over non-targets’ actions F;(-|a;, (ar(t))r2:) is stochastically higher conditional on the
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target buying over not buying.

Lemma 2B (Examples compel). In any equilibrium {(t*,i;,c;,pf,p*,, a;,a*,) her and for
each receiver t € R, if Sender targets t, then the distribution over the number of non-target re-
ceivers who buy the widget is stochastically higher if the target buys the widget: F,(-|1, (a;(t))r2t))
first-order stochastically dominates F,(-|0, (a;:(t))r2t))-

Proof. Let 7 : {0,0}%2 — {1,0}7~2 denote the function defined such that for each 0_, €
{0,0}72, 7(0_,) is obtained by replacing each observation o, = 0 with o, = 1, and keeping
any o, = () unchanged. Note that as the probability that each non-target observes the

target’s action is independent of the actual action taken by the target, Q,.(-|0) = Q,(7(-)|1).
Hence, by (36),

Fi((ar)r2)10, (az(t))r1))) = Qe({or = azoralt) = a,Vr # t}]0) (37)
Fi((ar)rze) |1, (a7 (X)) = Qe({or : az(T(0n)[t) = a,¥r # }]0). (38)

By comparing (37) and (38), we see that if each non-target’s strategy satisfies a(1[t) >
a’(0[t), then Fy(-|1, (aX(t))rx))) would FOSD F,(:|0, (aX(t))rx:))), which yields Lemma 2B.
We prove this next.

We begin by describing how each receivers’ strategy is derived. Recall, by the defini-
tion of an equilibrium, that (a;(t)),z coincides with the largest equilibrium in the game
between non-targets. By Milgrom and Roberts (1990), the largest equilibrium can be iden-
tified via an IESDS process. Formally, for each non-target receiver r # ¢, let O} denote the
set of observations under which the non-target receiver r strictly prefers to not buy over
buy assuming all other non-targets ' # r, ¢t buy regardless of their observation. Now, let
O? denote the set of observations under which receiver r strictly prefers not to buy as-
suming all other non-targets r buy if and only if they observe o, ¢ O;. Note that 02 D O}.
Repeating this process thus yields a sequence of non-decreasing sets O} C 0> C 02 C - --
for each receiver. Letting O, = limy_,, OF, the argument of Milgrom and Roberts implies
that in the largest equilibrium, a receiver buys if and only if they observe o; ¢ O;.

We first show that for all non-targets r # ¢, a:(1|1) > a}(0|t). By contradiction, suppose
that for some r # ¢, a:(1]t) = 0 but a(0[t) = 1. Let R’ denote the set of such receivers,
and k* be the smallest round in which some receiver r* € R switches to not buy. The goal
is to show at round £*, receiver r* strictly prefers to switch to not buying upon observing
o, = 0, which is a contradiction.

There are two possibilities to consider. First, suppose k* = 1. As discussed above,
receiver r*’s round-1 strategy is defined under the belief that all other non-target buy re-

gardless of their observation. Consider then receiver r* payoff at round one from buying
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upon observing the target not buy. This is given by

( u,-((0,1), G)p. (0, G|t, 0) )<( up-((1,1), G)p (0, G|t, 0) )
+Zgur*((071)7B)p;*(oaB|t70) B +Zeur*((1v1)7B)p;*(0vB|t70)

< ( up-((1,1), G)pia (1, Gt 1) ) <0
=\ + 3, u((1,1), B)p;. (1, BJt, 1)

where the first inequality holds due to strategic complementarities, the second as, by
Lemma 1B, p(1,G|t, 1) > pi(0,G|t,0) and u((at, a—y, G) > ui(a_y, B) for all a_;, and the
last as, by definition, receiver r* strictly prefers not to buy at round 1 conditional on
observing the target buy. But this means that receiver r*’s round 1 strategy conditional on
observing the target not buy must be to not buy, which contradicts a}(0[¢t) = 1.

Now consider k* > 1. Let a’, ~'(-) denote the strategy for a non-r* non-target receiver
7' % r,t at the k* — 1th round of the IESDS process. That is, a¥, ~'(0,») = 1 if and only if
o € O ~1. By the definition of k* — 1, all non-target receivers who observe the target buy
will buy at round k* — 1: a¥ ~'(1) = 1. Therefore, letting a" =} (0_- ;) = (al, "' (0))rotrss
it follows that for any o_,-; € {0,0}, a4 (0_- ;) < a* 2} (7(0-;+;)). Therefore, for each
state 6 € O, the expected payoff of receiver * at round £* — 1 from buying, conditional on
observing the target not buy, satisfies

> (1 (005,24 0-120)6) ) Qo110

st:z* (1 (0,05 2470, 6) ) Q0121010
- Z (1 (00524012 8) ) Q1)

< Z (1 (1102401210160 ) Qo1

where the last inequality holds due to strategic complementarities. It then follows that

the expected payoff of receiver r* at round k* — 1 from buying, conditional on observing



the target not buy, satisfies

S (ur*«o 0 10, 6)) Qo 1ea 03 0.G110)
#5, (3 0.0 ). B) ) Qo

)pi (0, B|t,0)

3 Do e, <ur*((1 el ,G))Qom )pi. (0, G|t 0)
LS (0 (0 0B ) QLo 1) 0,510
| = (1 (1. 240120, 6) ) QLo (1, G 1) By
TS (e (0 ). B Qo B )

where the first two inequalities hold by a similar reasoning to the case where k* = 1,
and the third inequality as, by assumption, receiver r* switches to not buy conditional
on observing the target buy at round £*. But this means that receiver 7*’s round k* best-
response conditional on observing the target not buy must be to not buy. This contradicts
at(0ft) = 1. O

We are now ready to prove the Example Unravelling Theorem.

Theorem 1B (Example-unravelling). In any equilibrium {(t*, i}, c;, pi, p*,, a;, a*,) }er, and
for each receiver t € R,

it € argmax > Pr(6) Y ims | 0) S il | ms)Upiiom) Z ] (39)
0

ms mg

and, for each observed message mg € supp(i; (- | 8)) and each allowable message m, € A(myg),

c;(my | mg) > 0= m; € argmax L[p;(iy,m) > oy]. (40)
meA(mg)

Proof. The logic is identical to the proof of the Example Unravelling Theorem in the main
text. First, observe that in equilibrium, Sender’s expected payoff from sending message
my; can be written as

> wl(ag(ma), a” (0-4]t))Qs(o—la; (my)) = V(a*(my))

o0t
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where

V(a) =Y o((ar, azy))Fi(ai|ag, (g (t))rz))

a—¢

Because v(a) is strictly increasing in a, Lemma 1B implies that V'(a,) is strictly increasing
in the target’s action a;,. Therefore, as in the main text, to establish that the Example

Unravelling Theorem holds, it suffices to show that

arg max V'(ay(m;)) C argmax L[pj (if,m) > oy]

m¢EA(ms) meA(ms)
To show this, take any message observed by Sender mgs € M, and any message m, €
arg max,,, c amg) V (a7 (my)). If every allowable message m; € A(ms) sent by Sender in-
duces the target not to buy, then V' (a;(m;)) = V(0) for all m; € A(mgs). Hence, both sides
of the above coincide.

Next, suppose there exists an allowable message m; € A(mg) which induces the tar-

get to buy: a*(1i;) = 1. Take any m; € argmax,, c oong) V(ai(m¢)). Then, V(a;(m;)) >
V(a;(m)) = V(1). Since V(a) is strictly increasing in a,, it follows that a*(m;) = 1, so

My € arg MaX,,c 4(m) L[p; (if,m) > oyl. O

Strategic complementarities and the double edged sword of popularity. We now dis-
cuss how strategic complementarities sharpen the double-edged sword of popularity. For
simplify, we assume that a receiver’s payoff depends only on (and is increasing in )the ag-
gregate number of other receivers who buy the widget:

u-(a_,8) = u, (Z ayr, 9)
r/Zr

For each non-target r # ¢, note that we may define a CDF F;(- | a;) which captures the
distribution over aggregate purchases by other non-targets, conditional on the target’s
action a; € {0,1}:

Fr(nla;) = Q, Oyt Z a’,(0_pi) <nopla |, Vn e [0, R — 2]

O—pt

Then, the payoff to a non-target from buying, conditional on observing the target buy, is

Z (ur(1+n,G)pi(1,G | t,1) + u (L +n, B)pi(1, B | t,1)),dF;(n | 1), (41)
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and, conditional on observing the target not buy, is
S (un(n, GYp(0, G | £,0) + uy(n, BYpi(0, B | £,0)),dF: (n | 0). (42)

By definition, a higher popularity for the target raises the probability that a non-target
observes the target’s action. Following the proof strategy of Lemma 2B, we may further
show that a non-target’s equilibrium action is higher conditional on observing the target
buy than on observing nothing. Thus, a higher popularity increases F*(n | 1) in the FOSD
order, i.e., other non-targets are more likely to buy, and so by (41) raises the incentive to
buy when the target buys. By a similar logic, a higher popularity lowers the incentive to

buy when the target does not buy. Hence, we obtain the following.

Remark 1. In any equilibrium, a higher popularity for the target popularity increases the prob-
ability a non-target buys conditional on observing the target buy, and decreases the probability a

non-target buys conditional on observing the target not buy

Remark 1 is the sense in which strategic complementarities sharpen the double-edged
sword of popularity. When the target buys (does not buy), a higher popularity raises (low-
ers) the probability that a non-target buys by simultaneously increasing the likelihood the
non-target observes the target’s action and, conditional on doing so, raises (lowers) each
non-target’s belief that others also buy. The latter effect is present only in a setting with
strategic complementarities.

C Multiple Targets

We now consider the case where Sender can chooses a subset of receivers to target 7 C R
subjectto 1 < |T| < T forsomel <7 < R.

Communication Protocols. We first extend the definition of a communication protocol
to allow for multiple targets. Formally, a communication protocol is tuple ((M"),er, (A" )rer, (I7)7T).
M = (M"),cr comprises of a collection messages. I C {ir : © — A(M7)} is a collection
of information structures available to Sender upon targeting 7, where M7 = x;c.-M".
Finally, for each m] = (m%)ier € M7, x,c7Al(mk) is a set of allowable messages.
The communication protocol induces a communication game between Sender and the
target 7 as follows. First, Sender chooses an information structure i7 € Ir. Conditional
on f, a vector of messages m}, € M7 is drawn with probability i-(m} | ), where the

message mf can be understood as the information that Sender acquires which can be
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communicated to the target t € 7. Sender then chooses what acquired information to
communicate to each targeted receiver, i.e., by choosing a m* € A’(mf) for eacht € T.
Each targeted receiver ¢ € T privately observes Sender’s communication to them, m?, and
then simultaneously decides whether to act. Finally, each non-targeted receiver indepen-
dently observes at one most targeted receiver, where targeted receiver ¢t € 7T is observed
with probability 7,7 > 0and ), - w7 € (0, 1).

Observe that what Sender can communicate to target ¢, A’(mY), depends only on the
information Sender acquires for target ¢, m’, and not on what information Sender acquires
for other targets, (mg)t,g,t. However, the information that Sender can acquire for target ¢
can depend on the information Sender acquires for other targets. It is through this channel
that the information Sender communicates to each target ex-post can be correlated.

To make this point precise, let I+, C {ir—; : © — A(M7-")} denote the set of all
available marginal distribution over messages for non-¢ targeted receivers under some
information structure in /7. This set captures the information Sender can acquire for non-
t targets, and is defined by

. dir € I+ s.t. VO € O, mT_tEMTft
Ir =i - -
mteM? ZT(mSams 0) =i t(ms 10)

Furthermore, for each ir_, € Ir_; and messages for non-t targets m) ' € M7, let
L(mE™ i) € {i(-lmLE~",-) : © — A(M?')} denote the subset of marginal distribu-
tions over receiver t’s messages received by Sender on each state, conditional on m” !
being drawn, inducible by some information structure available to Sender. This captures
the information Sender can acquire for target ¢ conditional on the information already

acquired for non-t targets, and is given by the set

ot Jir € I+ s.t. VO € O,
‘ ZT—t) = ( |m 7') : ¢ T—t . T—t
ir(mls, m§'10) = iy(m|mf ™", 0)ir—(mE*|0)

y ( ‘ Q) dir € I s.t.
= ml ,0)
vele s o0t mT6) = i (b m I 0)ir_ (m10)

(. J

L(mL™

*It(ms Yig_1,0)

Notice then that fixing how Sender acquires information for non-t targets, i7_;, acquiring
different information for non-¢ targets’ may lead to different possibilities for acquiring
information for target : mJ} ' # mZ% ' may imply I,(m] " \ zT D # L(mE™ | iry).
Likewise, fixing the information acquired for non-t targets, m . ~*, changing how Sender

acquired information for other targets may lead to different possibilities for acquiring
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information for target t: ir_, # i’-_, may imply I,(mL~" | ir_;) # L(mL " | i_,).

As it turns out, the multi-target Example Unravelling Theorem (to be stated) can be
substantially strengthened when the information Sender can acquire for target ¢ is inde-
pendent of how and what information is acquired for non-¢ targets. We call such com-
munication protocols private. Formally, let I7(¢) C {i; : © — AM'} denote the subset of

marginal distributions over messages Sender can acquire for Receiver ¢, i.e.,
Ir(t) = S iy : Fig € Irer Y ir(ml,mE10) = iy(mkl0), VO, mi
T—t
mg

= Xpeo { i1(-|0) : Jir € Irgr Y ix(ml,mf'(0) = in(mil0), Vmi

T—t
mg

=I7(t/6)

Then, a communication protocol is private if for all 7 and ¢t € T, for all i_, € I7_, and
messages m} € M7, I,(mL~" | ir_,) = I7(t) holds (equivalently, for all § € ©, I;,(m. " |
i7—t,0) = I7(t|f) holds). This class includes, for example, the standard unconstrained

information design problem introduced in (Bergemann and Morris, 2019).

Strategies and payoffs. A strategy for Sender is a triple (7, {i7}7, {c¢r}7), where T is
the Sender’s choice of target, and, for each possible T, i € I7 is Sender’s choice of infor-
mation structure, and ¢ = (¢y7) is a collection of communication strategies for Sender,

where
cyr € CY = {e; - MY — AM") | Ymly € M, supp(é(-|mk)) C A'(m4)}

is Sender’s communication strategy for each possible message acquired for receiver t.
Notice here that we focus on communication strategies for Sender in which the messages
she sends to a target ¢ depends only on the information she acquires for target ¢, m’, and
not of the information she acquires that can be communicated to other non-t targets."

If a receiver r € R is targeted, so r = ¢t € T, then his posterior belief p, (i1, m;) depends
on Sender’s information structure i, and observed message m'. Meanwhile, the posterior
of a receiver who is not a target r ¢ T, p,(7 | t,0;), depends on the target 7, the receiver
she observes t € T U {0} (where ¢ = () means she observes no target), and the targeted
receiver’s action if observed, o; € {0, 1}.

9This rules out signalling equilibria in which Sender changes how she reports her acquired information
to a target purely to signal that she has acquired different information for other targets.
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Given the above, Sender’s payoff from targeting 7 and sending message m’ given
beliefs (pr,p_7) is

Vil pr o) = 3 (Undiran) 2 o) (1m0 S 1T [1.1) 2 ]))

teT r¢T
"‘Z( pe(iT, m <Ut<77t|’rz prT|tO)>0r]>)
teT r¢T
(1 - ZWtT) > lip(T10) > o]
teT r¢T

Because Sender’s communication (strategy) to a target depends only on the information
she acquires for that target, the target’s equilibrium belief varies only with Sender’s in-
formation acquisition for the target, and not with her information acquisition for other
targets. Thus, fixing a target ¢, the belief of any other target ¢’ € 7 — t depends solely
on the Sender’s information acquisition for non-t¢ targets, i7_, and can thus be written as
py (i7_g, m?). By contrast, ¢’s posterior depends both on i7_; and on the Sender’s infor-
mation acquisition for ¢ conditional on the information received for non-t targets,

LT = {ae(- | m )} mlteMT—t)

so it can be written as p;((i7—_¢, ij7), m"). This allows us to express Sender’s payoff in a
form that isolates the effect of changes in how Sender acquires information for target ¢ as

follows:

Vrirlm propr) = 3 (Apetir-m’) 2 0014 77 1T 12,1) 2 0]

veT—t ré&T
—i—t/;t ( pr(ir—1,m") < of] (Wt’Tg;ﬂ[pr(T [1,0) > ‘77’]))
(1 - ZﬂT) Z [p-(T10) > o,]
teT r¢T
+ (1 Gr-aor)om) 2 0 (14 i T 1) > 1))
+ (ﬂ[ptpt((ifmtrr),mt) < 0y (th;ﬂpr(T 1,0) > M))

The first three terms, which is the payoff Sender obtains from non-t receivers assum-
ing non-targets only observe the actions from targets in 7 — ¢, does not depend on how
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Sender acquires information for target t. Meanwhile, the last two terms, comprising of
Sender’s marginal gain from targeting receiver ¢, which includes both the direct benefit
from sometimes persuading ¢ to buy, and the indirect effect that observing t¢’s actions has
on non-targets” actions, do.

Equilibrium. An assessment (7, {ir}r, {cr}7, {P7,P-7}7) is an equilibrium if:

1. For each target 7T, the posterior p,(7) of each non-targeted receiver » ¢ 7T is derived
using Bayes’ rule, Sender’s strategy, and the targets” posteriors, p7:

Pr(0 = G) X nremr LomTexier anmy) iT(m§|0 = G)e(m|m)

p(T |1.1) = S
Zae{G,B} Pr(0) ngeMT ZmTexteTAt(mts) z’T(mQ@)ct(mﬂmg)
pt (iT’mt)th

Pr(6 = G) S pgerr S exeer ity ir(mi 18 = G)e(m!m)

(iT,mt)<crt
(T [1,0) = L . . (43)
Zee{G,B} Pr(0) ngeMT ZmTGXteTAt(mg) ZT(mW)Ct(mt!mg)
pe(iT,mb) <oy

ift # (), and

pe(T [ 0) = p, (44)

otherwise.

2. For each target 7 and targeted receiver ¢ € 7T, his posterior p, is derived using
Bayes’ rule and Sender’s strategy: for all m; Sender communicates with positive

probability:*
pi (i, my) K Zm?tEMT—t Zm‘ser itlT(mng_tve = 1)iT—t(m§_t|9 = ce(m! | m)
t\tT, 11t ) = . — X — ’
ZHG{G,B} Pr(0) Zm;'*teMT*t ngeMt steM lt\T(mng Y 9)277t(mﬂsr t|9)0t(mt | mts)
(45)
WY Tt g i (mE 1[0 = G)er(m! | my)
ms M7 T —t. (46)

Yoetc.my PrO) X 1o cppr o iT—e (mG T )cu(mt | m)

The first equivalence emphasizes that a target t’s belief depends jointly on how Sender acquires in-
formation for non-t targets, i7_;, and how Sender acquires information for target ¢ given the information
acquired for non-t targets, i;;. The second equivalence emphasizes that holding fixed how Sender ac-
quires information for target ¢, changing how Sender acquires information for other non-t¢ targets does not
affect target ¢’s beliefs. Put differently, for any other target ¢ # ¢, a target t’s belief depends only on the
distribution over non-t’ targets” messages, i7_.
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Meanwhile, if m! = {rmk} ¢ A;(m%) for all mY # mk, then®

pi(mslf = G)
> ocic.py Pr(0)i(ms|0)

plir, {ms}) = (47)

where i, is the marginal distribution over target ¢’s messages observed by Sender.

. For each target 7, Sender’s choice of information structure ¢7 and communication
strategies cr are optimal given the posterior beliefs of the targets, p7, and of non-
targeted receivers, p_r:

1T € arg rz%?;( Pr(0 Zz )Z (H Ctn'(mt | mé)) VT,i(mTupTap*T) (43)

mT \teT

and, for each observed message m] € supp(ir(- | 0)), targeted receiver ¢t € T and
each allowable message m’ € A(mY),

cyr(m' | mg) > 0=m' € argn?aX) Vrir (0, m” "), pr,p_7). (49)
mtecA;

. Sender’s choice of target is sequentially optimal:

T € argmax ZPr ) ir(mE [6)) (H cyr(m' | mg)) Vi (m” pr,p_7).

!
T'CRAL|TI<T ml — it

(50)

Example Unravelling Theorem. We now set out to prove the multi-target version of

the Example Unravelling Theorem. We begin with two analogues to our main-text ob-

servations. First, Lemma 1C says that given any targeted receiver ¢ € T, holding fixed

non-targets’ observations / non-observations of non-t targets actions, a positive example

by t —1i.e., t buys the good — induces the non-target to hold more positive beliefs about the

quality of the widget.

Lemma 1C (The power of examples). In any equilibrium (T*,{i%}r, {cF}r, {p¥F =7} 7).

and for each set of targets T, if Sender targets T, then for all targeted receivers t € T, receiver

2This last requirement says that, if the communication protocol allows Sender to credibly communi-
cate the message he observes, then the target’s belief upon observing such credible communication must
coincide with Sender’s belief. This is also a version of the “no signaling what you don’t know condition”.
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r’s posterior belief is greater when he observes that t buys the widget than when he observes that t
does not: forall r & T, pi(T | t,1) > pi(T | ¢,0).

Proof. The proof is similar to that for Lemma 1 in the main text. Let Q)(m,|1) denote the

distribution over messages for target ¢ that induce ¢ to buy and not buy respectively. Then,
by (43) and (45),

pr(Tt, 1) = Z Py (i, me) Q(my|1) > Z 01Q(my|1) = oy

mtEJV[t mtEMt
pi (iT,me) >0t Py (iT,me) >0t
while
piTILO) = > pilirm)Qml) < Y o Qmull) =0y
mtEMt mtEJ\/]t
pi(iT,m¢)<ot p; (i7,m¢) <oy
sop;(T | t,1) = pi(T | ¢,0) O

Next, Lemma 2C says that given any targeted receiver ¢ € T, holding fixed non-
targets” observations / non-observations of non-t targets actions, on average, a positive

example from ¢ raises the probability the non-target buys.

Lemma 2C (Examples compel). In any equilibrium (T*,{i%}r, {1, {p}, p*+}7), and for
each set of targets T, if Sender targets T, then for all targeted receivers t € T, receiver r’s proba-
bility of buying the widget is greater if the target buys the widget: for all r # t,

rr L pi(T | 61) > 0,] > myr Lpi(T | £,0) > o). (51)

Proof. Follows immediately from Lemma 1C. O

We are now ready to state the weak version of the multi-target Example Unravelling
Theorem. It says that holding fixed a targeted receiver ¢t and any information received
which is relevant for non-¢ targets, Sender’s equilibrium communication must maximize
the probability that ¢ buys the widget. That is, after fixing her communication to non-t

targets, Sender optimally communicates to target ¢ as if no other receiver exists.

Theorem 1C (Weak Example-unravelling). In any equilibrium (T*, {i% } 7, {c . {5 P 7} 1),
for each set of targets T, targeted receiver t € T, and all messages for non-t targets observed by
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Sender m% " € M7~ with strictly positive probability,

iy (lmg", )
e ammax SOPHO) Y dgr(mimI0) Y i’ | mb i m') > o]
it\T('lms )Elt(ms |ZT t) 0 mg mt

(52)

Additionally, for each observed message m'; € supp(i;(- | 6)) and each allowable message m' €
A(my),

CI‘T(mt | m%) > 0= m' € argmax 1[p; (i’, m) > o). (53)
meA(mg)

Proof. First, to simplify notation, let us write

Visir (m ™ prp )= 3 (n[pm_t,mt’) > o0] (14 7 S 1T 1421 2 0] )

teT—t r¢T

teT —t r¢T

(1 — Zﬂ'tw’) Z Dr T‘@) > 0'7«] (54)

teT r¢T

Vigir-aigr) (7 pr.0-7) = (1lir—ssigr).m) = o) (14 7y 1T 01) 2 0]
re¢T

+ (1Cir-rvivr).m®) < ol (g S U 1.0 2 0]} ) 69
r¢T
By the preceding discussion, (54) and (55) captures, respectively, the component of Sender’s
payoff which does not and does depend on how Sender acquires information for target ¢.
Notice then that Sender’s payoff can be written as

2P 5m16)) (H Cir(m" | mz>> Vris (m”,pr,ply)

mg- mT teT

=SPe0) | Y imI ) Y <H C?w(mt'lmfé)) x
6

ml ! mT—t \t'eT—t
(zt|T<ms|mT 0 it | 15 Vaersanmy(m . prpor)
mt
+ VTft ir t(mT_t,prt,pr) )
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Hence, holding fixed how Sender acquires information for non-t targets, i-_,, how Sender
acquires information for target ¢ conditional on the information acquired for non-¢ targets,
{iy (- im% 9>}m;’—te M7t 6o MUSt maximize her expected payoff:

ifr(m§~.0) €
arg max Zit|7—(mg|ms , th”— Yl ms)V; NG zt‘T)(( m',m’” "), pr,p_7)
itw(-\mg%ﬂ)éh(mS *liz_,,0) mk
Because Sender’s payoff is linear in probabilities, and I;,(m] " | i%_,) = xgeoli(m} " |
i7_,0), the above is equivalent to saying that {7} (- m} ')}mg—t c)7— Must solve

_—
inr(lmg ™", ) €

arg max ZPr )Zit|7(mg|ms , ZCtIT L mi) Vi, NG 7tw)((mt,mT*’f),pT,p,T)
it|7’("ms )Elf(ms "T f) 0 t

Noting the similarity between the above and (52), it follows that to prove the weak Ex-
ample Unravelling Theorem, it suffices to show that for all m}, " € M7,

argmax Vi s ZHT)((mt,mT’t),pT,p,T) C argmax 1[p;(i%,m") > oy]. (56)

mteAy(mk) mteAr(m)
The argument follows Theorem 1 in the main text, so we keep it brief. Fix any information
acquired for target t, mf%. Suppose that regardless of the information communicated to
target t, m' € A,(mk), target ¢t never buys the widget: pj;(i%,m') < o,. By (55), this
means that regardless of what Sender communicates to target ¢, the change in Sender’s
payoff arising for target ¢ is the same: Vt,(ii‘r_t7it|r)((mtv m” '), pr,p_7) is constant for all
mt € Ay(mk). It then follows that both sides of (56) coincide.

Next, suppose that there exists a message Sender can send to target ¢ that convinces
target ¢ to buy the widget, i.e., Im' € A;(mk) s.t. p;(i%, m') > o;. Because, by Lemma 2C,
regardless of what is observed for non-t targets, non-targets buy more frequently condi-
tional on target ¢ buying that not buying, Sender’s payoff V; i, i, (m”, pr, p_7) is max-
imized on the subset of messages in A;(mf) which induce the target to buy: p;(i%-, m') >
0. Thus, the LHS of (56) must be subset of the RHS of (56). O]

In general, the weak Example Unravelling Theorem does not say that Sender opti-
mally communicates to all targets as if there exists no other receiver. This is because in
general, the set of information structures available to Sender, /7, may be sufficiently small
so that the information Sender acquires for each receiver must always be correlated. As
such, acquiring more information that raises the probability one receiver buys the widget

may require lowering the probability the other receiver buys the widget, and vice versa.
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Of course, the issue described above would not persist if the communication protocol
is private, where Sender can freely adjust the information acquired for one target with-
out affecting what is communicated to other targets. The next result shows that because
of this, we obtain the full analogue to the single target Example Unravelling Theorem:
Sender optimally communicates to all targets as if there exists no other receiver.

Theorem 2C (Strong Example-unravelling). Suppose that the communication protocol allows

for pure private communication. In any equilibrium (T*, {5}, {cF}r, {p%. P> +}7), for each
set of targets T and targeted receiver t € T,

iy € arg maXZPr Z@t(mg | 6) Zcf(mt | mg)L[p; (%, ms) > 03] (57)

wwelr(t) t
mg my

Proof. Suppose that communication is private. By (52), this means that for all m} ™" ¢
M7~ drawn with strictly positive probability,

i;"w(-lmg_t,@) arg H(laX E Pr(0 E is(ml | 0) E c; (my | mg)L[p; (¢, my) > 0y
el (t,0) mt i
S

Since this holds for each realization of m7 , it follows that aggregating over all messages
m}, " drawn under i%-_,, we have

5 Pn(6) X it 16) 3 cime | ms 0 me) 2 o

mS m

= 2P0) 3 (X il ,6) S il | ) 1075 m) > o]

ml—t mb, m
— ZPr i s ,(mL7Y6) |9H£§ta ZPr Zzt ml | G)Zcf(mt | mg)L[p; (5, mi) > oy

ml m me
_ ZPr (6) Slerrée}z(to ZPr Zzt (ml | Q)Zc:(mt | mg)L[p; (i%, ms) > 03]

mS mg
— itrenli}((t) 6 Pr(9) Zit(mé | 0) ;Ct (my | ms)]l[p:(i*%mt) > oy,
my .

so (57) holds. ]
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D Receivers observing other receivers’ actions

In this extension, Sender’s objective and communication protocol are unchanged; a strat-
egy for Sender remains a triple (¢, {i;}ier, {¢t}ter). The new component is that, after
(possibly) observing the target, receivers truthfully announce their intended actions and,
with some probability, observe others” announcements. This changes non-targets” infor-
mation sets and affects their final (rather than merely interim) beliefs. We therefore first
formalize the timing and introduce notation for interim posteriors and cross-observations

X5, q5(a), W), Z7) as well as the induced product measure Q,. We then adapt the

equilibrium definition to this information structure and establish the analogue of the Ex-
ample-Unravelling Theorem and the double-edged sword of popularity.

Timing and notation. We begin by summarizing the timing. In stage 1, Sender chooses
a target t and communicates with him privately. The target then takes an action a; €
{0,1}. In stage 2, non-targeted receivers observe the target’s action independently with
probability 7. In stage 3 all receivers (including the target) make a truthful announcement
of their intention to buy or not buy. Stage 3 announcements are observed independently
by each receiver with some probability which we formalize shortly. In stage 4 each non-
target updates their interim posteriors to a “final posterior” and chooses whether to buy.

We now fix the notation for the new objects arising particularly in stages 3-4.
* For each non-target r # ¢, after stage 2 the interim posterior is
p™(0) = p.(t] o} = o), o€ {1,0,0}.
By Lemma 1, in any equilibrium (which we define below), p™(1) > pi"*(0).
¢ In stage 3 every receiver j € R announces
X; = 1p™(0) > 05] € {0,1}.
For each non-target j # t, we define

gi(a) = Pr[X; =1]a;,=a] = m1[p*(a) > o;] + (1 —m) Yp > o],

and Lemma 2 implies that in any equilibrium, ¢;(1) > ¢;(0). For completeness, set
¢:(1) = 1 and ¢/(0) = 0 since X; = a; by truthfulness and the target’s threshold rule.
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* In stage 3, for each ordered pair (r, j) with » # j, receiver r observes X; with prob-
ability o,(j) € [0, 1], independently across pairs (and independently of stage 2). Let
W7 € {0,1} be the indicator that r observes j’s announcement, so Pr(W] = 1) =

o-(j), with independence across (r, j) and from earlier stages. Define
Zr=Wwr-X; € {0,1)

to be an indicator for the event that r both observes j and sees X; = 1. Conditioning
on the realized target action a; = a,

Pr(Zf =1]a;=a]=Pr(W; =1, X; =1 a; = a)

(W
(Wi=1)Pr(X;=1|a,=aq)

and similarly Pr[Z} =0 | a; = a] = 1 — 0,(j) ¢;(a). It is straightforward to show that
{Z}}j#r are conditionally independent given a;. Intuitively, once a; is fixed, Z} only
depends on agents’ observations of the target’s action, which are independent.

Write Z" = (Z]) ;4 € {0,1}77! and define the induced product measure

Qzla=a) = ] (o) a(a)” (1 - 0,(j) a5(a))" . (58)

JFr

* In Stage 4, each non-target r # t observes S, = (0}, Z") and forms the final posterior
pr(S;), then buys iff p,.(S,) > o,.

Sender’s expected payoff with cross-observation. Given a target ¢, a message m; to ¢,
and belief functions (p;, p_;), define

VtObs(mtaPtap—t) = 1p:(t,mu) > o] | 1 + Z <7Tt ﬂ[pirm(l) > oy
r#£t

Fa-m) Y 1 0.2) > 0,] Oz 1))) (59)

Z

+ Lpe(ie, ) < o] (Z (e 1p(0) > o]

r#t

+ (1 —m) Zl[pr(@,z) > o, Q(z | O)))
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This is the expected number of buyers (including ¢ if the target buys), where for non-targets
we combine the stage 2 probability (7;) of observing ¢ and the stage 3 probability of ob-
serving other receivers having not observed ¢.

Equilibrium. We preserve the baseline definition of equilibrium but augment it to cap-
ture rationality of both the interim and final beliefs of non-targets. Formally, an assessment
is a tuple

(t, {ittiers {ct}ier, {ptap—t}tER)a

where for each ¢,
* p = pi(iy, my) is exactly as in the baseline model, and

e p_, collects, for every non-target r # t, both an interim belief map p™ : {0,1,0} —
0, 1] and a final belief map p, : {0,1,0} x {0, 1}#°1 — [0, 1].2

An assessment is an equilibrium if, for every ¢ € R:

1. Foreachr # t, p™(o0) is derived by Bayes’ rule from (i;, ¢;) and the target’s threshold

T

rule exactly as in the baseline (1)—(3).
2. p, is derived as in the baseline (4)—(5).
3. Foreachr #1¢,

o If o] € {0,1}, then observing Z" carries no additional information about 6 be-
yond a; = o;. Indeed,

. Pr(0=G,a; =0],Z" =z Pr(0 =G,a; =0])Q,.(z | o]
pr(o},2) = ( — ) _ B = ) (Z:Of«)
t

N Yoo Pr(0,a, = 0], Z" = z) N Yoo Pr(0,a, = o)) Q,( )
. PI‘(@ = G7 ar = O:) _ _int/ 7
>, Pr(0,a,=0)) Py (o),

since Q,(- | a) does not depend on 6§ once a; = a is fixed.
e If o] = ), then by Bayes’ rule

p(Pr(a; =1]G)Qu(z | 1) +Pr(a; =0]G)Q:(z]0))

T Yo PrO)(Pr(a, =11 6)Qu(z | 1) + Pr(a, = 0] 6) Q. (z ] 0))
(60)

p-(0,2)

2In a slight abuse of notation we continue to write p, as in the baseline model, but we now view it as a
function of the full signal S, = (o}, Z").
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4. Given (p;, p_t), Sender’s choice of i; and ¢; solve

i € arg max gPr(ﬁ) Zz(ms | 0) Z ce(my | ms) VP (my, pe, p—y), (61)

mg mi€A(mg)

ci(my | mg) >0 = my € argmax V™ (m, pr, o). (62)
meA(ms)

Note that these expression are identical to Equations (6) and (7) but with V" in
place of V;.

5. Sender’s choice of ¢ is sequentially optimal exactly as in (8), evaluating continuation
payoffs via V°bs.

We gather two facts about the stage 3 announcements and stage 4 beliefs that we will
use below. Equip {0, 1}#~! with the product (coordinate-wise) order, so y > ziff y; > z;
foreachi € {1,..., R—1}. For two random vectors Z") and Z(®) with probability measures
vi, v on {0, 1}771, 1y first-order stochastically dominates vy (denoted vy >rosp 1p) if

Pr(z" >z) > Pr(Z® >z) forallz € {0,1}/"".

Equivalently, writing U, := {x : x > z}, the FOSD condition is 14 (U,) > 1y(U,) for all
z. In what follows, Q,(- | a) denotes the product-Bernoulli law defined in (58). To avoid
ambiguity, we write Q,(z | a) for its point mass at z and, for any set A C {0,1}771,
Qr(A]a) =2 kea Qx| a).

Lemma 16 (FOSD shift in observed positive announcements). Fix any equilibrium, a target

t, and a non-target r # t. Then Q,(- | a) (as in (58)) satisfies,

Q-(-|ar=1) =rosp Q.(-[ar=0).

Proof. By (58), under a; = a the vector Z" has independent Bernoulli coordinates with
means {0,(j)g;(a)};«-. Construct on a common probability space i.i.d. U; ~ Unif[0, 1] for
j # r and define, for a € {0, 1},

Z](-a) = H{UJ S OT(j)Qj(a)}7 Z(a) = (Zj(a))j7ér'

Then Z® has law Q,(- | a). Since ¢;(1) > ¢;(0) for every j, we have Z](-l) > ZJ(O) and hence
ZW > 7O coordinate-wise. Therefore, for every z € {0, 1}£71,

Pr(zZV >z) > Pr(Z9 > 2),
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which is exactly Q, (- | 1) =rosp Q. (- | 0). =

Lemma 17 (Monotone updating from announcements). Fix any equilibrium, a target t, and
anon-target v # t. If of € {0,1} then p, (o}, Z") = p™*(of). If of = 0, then p,(0,2) is (weakly)
increasing in each coordinate of z.

Proof. If o] € {0, 1}, the claim is exactly item 3 in the equilibrium definition (stage 4 carries
no additional information about 6 conditional on a;).

When o] = (), write the posterior likelihood ratio as

pr@z)  p Pra=11G)Qz|1)+Prla=0[G)Q(z]0)
T p02)  1—p Prla,=1]B)Q(z| 1)+ Prla; =0] B)Q.(z | 0)
_ . Pr(a,=1[G)R(z) + Pr(a, =0 G)
"~ 1—pu Pr(a; =1]| B)R(z)+Pr(a; =0 | B)’

where R(z) = Q,(z | 1)/Q.(z | 0) (interpreted as +oc if the denominator is zero and the
numerator positive). Let

Pr(a;=1]| G)R+ Pr(a; =0 | G)
Pr(a; =1| B)R+Pr(a;, =0]| B)

f(R) =

Then
Pr(a; =1|G) —Pr(a; =1| B)

(Pr(a;=1| B)R+Pr(a, = 0| B))*

f'(R) =

so f is (weakly) increasing in R. Hence it suffices to show that R(z) is (weakly) increasing
in each coordinate of z.
Fix j # r and let z/ be z with the j-th coordinate flipped from 0 to 1. From (58),

where ¢(z) := 2/(1 — z) is increasing on [0, 1) and we adopt the convention ¢(1) = +o0.
If 0,(j) € (0,1] and ¢;(1),¢;(0) € [0,1) then the inequality immediately follows from the
fact that ¢;(1) > ¢;(0). If o,.(j) = 0, or if ¢;(1) = ¢;(0) = 0 then the j-th coordinate is
deterministically 0 under both laws and the monotonicity is vacuous. If ¢;(0) = 0 <
¢;(1), then the ratio is +-00 so again the inequality holds. Iterating this single-coordinate
argument yields that R(z) is (weakly) increasing in each coordinate, hence so is p,. (0, z).

O

We now use Lemmas 16 and 17 to show that examples (still) compel.
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Lemma 2D (Examples compel). In any equilibrium
(t*, {i; eer, {¢} Heer, {0, P }ier ), and for each receiver t € R, if Sender targets t, then receiver
r’s probability of buying the widget is greater if the target buys the widget: for all r # t,

Pr(a, =1|a;=1) > Pr(a, =1|a; =0).

Proof. Let a; = a be the realized action of the target. Then we may decompose Pr(a, =1 |

a; = 1) by whether r observes a;:

Pr(a, =1|a, = a) = m 1[p"(a) > o] + (1 = m) Y _1[pe(0,2) > 0] Qu(z | a).

z

The first term is weakly larger at a = 1 because pi**(1) > p*(0). For the second term—
which can be written as (1 — m;)Eq, (o) [L[p,(0, z) > 0,]]—Lemma 17 implies that the indi-
cator is (weakly) increasing in z, while Lemma 16 says Q, (- | 1) first-order stochastically
dominates Q, (- | 0). It follows that the expectation is weakly larger at « = 1 than at a = 0.

Hence Pr(a, =1 |a;=1) > Pr(a, =1]| a; =0). O

Example Unravelling Theorem. Fix (i, ¢;). For any allowable m; € A(mg), define the

induced target action
at(mt> = Il[pt(it,mt) Z O't:| - {0, 1}

Let the continuation response of non-targets to a realized target action a € {0,1} be
Gila) = ZPr(aT =1|a;=a).
r#£t

By construction, G;(a) depends on the equilibrium beliefs (p;,p_;) and primitives
(m¢, 0-(+)), but—crucially—does not depend on which particular message m; induced the

action a. Lemma 2D implies
Gi(1) = G(0). (63)

With this notation, Sender’s expected payoff from sending m, can be written succinctly

as
VoS (my, pr, p_y) i= ag(my) - (1 + Gt(l)) + (1 — ar(my)) - G¢(0). (64)

Theorem 1D (Example-unravelling). In any equilibrium
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(t*7 {i:}tERa {Cr}tERa {p:a p*—t}téR)/ ﬂndfOT" eacht € 7?//

iy € Arg max ZPr(H) Z i(ms | 0) Z ¢ (me | ms) 1p;(i,me) > a¢],  (65)
0

mg€EM mteA(ms)

and, for each mg € supp(i; (- | 0)) and each m; € A(mg),

¢;(my | ms) >0 = my € argmax 1[p; (i}, m) > oy]. (66)
meA(mg)

Proof. As in the proof of Theorem 1, it suffices to show that for any ¢ € R,

arg max V> (my, pf, p*,) C argmax 1[p; (if,m) > o] = arg max a,(m). (67)
meA(ms) meA(ms) meA(ms)
First, suppose that every allowable message induces a; = 0. Then the target never buys
and Sender’s value function is identical for all messages, so the theorem follows trivially.
Hence suppose there exists an allowable message m, € A(mg) with a;(m;) = 1. For
any m; € A(mg), subtracting (64) evaluated at 7, from (64) evaluated at some m,; €

arg Max,,c 4(mq) Vi (M, pf, p*,) yields

Ve (me pi,p7 ) = Ve e pf.pT) = (ar(me) = 1) (14 Go(1)) + (1= ar(m)) - G(0)
= —(1 = a(my)) (1 + G4(1) — G4(0))

There are two cases to consider:
o If a;(m;) = 1, the difference is 0.
e If a;(m;) = 0, the difference equals —(1 + G;(1) — G(0)) < —1 by (63).

Hence any message m, with a;(m:) = 0 is strictly worse than 7,, while any m; with
at(my) = 11is a (weak) tie with ;. Therefore every optimal message must satisfy a,(m;) =
1,i.e. my € argmax,, ¢ 4(mg) @:(m), which completes the proof. O

The sharpened double-edged sword of popularity. Justasin the baseline model, Sender’s
equilibrium payoff from targeting a receiver can be decomposed into the cases where the
target does versus does not buy. The difference here is that, in addition to direct ob-
servation of the target, non-targets may observe others’ truthful announcements, so the
continuation values become functions of the target’s popularity via the cross-observation
channel.
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Let
Pr= ) "Pr(0)) if(ms |0) > cf(mi| ms) Lp;(is,mi) > o] (68)
0

ms miEA(mg)

be the equilibrium probability that the target buys under (i}, ¢;). Recall the continuation

response

Gyla) = ) Pr(a, =1]a=a) =) [m1[pM"(a) > o]+(1-m)>_ 1[p:(0,2) > 0,]Qu(2 | a)]

r#t r#t z

and write G;(a, m;) to emphasize its dependence on 7, and G;(a, ;) for its equilibrium

value.

Lemma 19 (Value decomposition with cross-observation). In any equilibrium
(t*a {i:}tERv {C:}tERu {p:7 p*—t}tER)/

E[V™(ir,pf,p5)] = Pr(1+Gi(Lm)) + (1= F)G(0,m). (69)
Moreover, by Theorem 1D, P} is independent of ;.

Proof. By (64), V2 (my, pi,p*,) = a(my) (1 + Gy (1,m)) + (1 — ay(my)) G5 (0, 7). Taking
the expectation over (if, ;) yields (69) with weights Pr(a; = 1) = P} and Pr(a; = 0) =
1 — P;. The independence of F; from 7, follows from Theorem 1D, which shows that
iy maximizes the threshold-crossing probability and this optimization does not involve
. L]

The representation (69) is the exact analogue of the expression in (16)— there, the contin-
uation terms reduce to

G:(l,ﬂ‘t):Ft—{—TftG:, G:(O,’ﬂ't):Ft—ﬂ'tL;k,

so that E[V}] = P/(1 4+ mGy) — (1 — Pf)mL; + F}. In the present extension, G;(1, ;) and
G5 (0, m) are generally nonlinear in 7, because ¢;(a) and Q,(- | a) depend on .

Popularity remains a double-edged sword and is in fact sharpened by the additional
announcements. To see this, note that

gj(a) = m1[pj*(a) = o] + (1—m) L >0y,

so the fact that p!*(1) > p and p*(0) < p implies dg;(1)/dm > 0 and 9g;(0)/dm, < 0.

Since the expected coordinates of Z" are increasing in ¢;(a), and the beliefs p, (0}, z) are
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increasing coordinate-wise in z (Lemma 17) the FOSD relation (Lemma 16) implies that
the stage 4 expectations

> Up(0.2) > 0]Qz|1) and Y 1[p.(0,2) > 0]Q(z]0)

move weakly in opposite directions as 7; increases (upward for a; = 1, downward for a;, =
0). Hence, holding P; fixed, the continuation term in (69) increases with 7, when a; = 1
and decreases with m, when a; = 0. Intuitively, popularity now amplifies the target’s
example through two channels: (i) the baseline re-weighting of the direct-observation
branch and (ii) an additional FOSD shift in the distribution over observations of other
receivers.

In this precise sense, the double-edged sword of popularity from the baseline model
persists and is sharpened when receivers can observe others” announcements.

E Microfounding Popularity

Suppose receivers are positioned in a connected, undirected network G = (V, E), where
V = R are the vertices and F C 2<‘2/> are the edges. The structure of G is common knowl-
edge to Sender and receivers. Write N(i) = {j € V:ij € E} for the set of neighbors of
i. Each edge independently transmits any neighbor’s action with exogenous probability
q € (0,1) (link failure with probability 1 — ¢). The diffusion process unfolds in discrete
stages s = 1,2,..., R We write o,(s) € {0,1,0} for the action of agent r in stage s, where
() denotes no action.

At stage 1, the target ¢t chooses 0,(1) € {0,1} if and only if her posterior p, > o;.
For each subsequent stage s > 1, any node j that has acted in stage s — 1 broadcasts
that decision to each neighbor i € N(j) with probability ¢q. A receiver i who has not yet
acted (0;(k) = 0 for all k < s) and who observes at least one neighbor’s action at stage s
forms a posterior from the observed neighbor(s) actions and then makes a once-and-for-
all decision o;(s) € {0, 1};** those who do not observe the action of any neighbor remain
inactive (0;(s) = 0).

Popularity in the network model is the probability that a randomly chosen non-target—
say, j—eventually sees (through some chain of neighbor-to-neighbor transmissions) an
action that originates with the target t. This is the equivalent to the probability that ¢t and
J are connected in the percolated subgraph, that is, after link-failure has occurred. With

BSince the network is connected, the diffusion of information takes at most R stages.
24This assumption avoids the kind of strategic delay present in, e.g., Chamley and Gale (1994).
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this in mind, let G(q) = (V, E(q)) denote the random subgraph of G obtained by retaining
every edge independently with probability ¢. Fixing a target ¢, define

m;(G,q) = Pr(jis connected to ¢ in G(q)).

The quantity m;;(G, ¢) is the chance that some neighbor of j takes an action which can
be traced, link-by-link, back to ¢’s initial move. If j is a neighbor of ¢ (d(¢,j) = 1) this is
just the probability that the single edge ¢; transmits; if ¢ and j are not neighbors (d(¢, j) >
1) the information travels via intermediate nodes who learn from their own neighbors’
actions.)

The popularity of ¢ is the average of these reach probabilities across all other receivers:

(G, q) = % Z ;i (G,q) € (0,1).
it
(G, q) is therefore exactly the probability that a non-target drawn uniformly at random
will ever observe a neighbor’s action that ultimately descends from ¢’s decision.
Closed-form expressions for the m;;’s are available only for special networks (e.g. trees,
where m;; = ¢9%9)), or under sparsity/small-¢ approximations. A practical and widely
used proxy is diffusion centrality (Banerjee et al., 2013). Let A be the adjacency matrix of G.
The diffusion centrality of node ¢ is defined as

M:o

DCy(A,q) = [ qAél]

=1
which counts the expected number of “successful” walks that start at ¢. Because each
walk that reaches j implies that j hears a neighbor’s action originating from ¢, diffusion
centrality over-counts whenever multiple walks reach the same node; but it coincides
with (R — 1)7; (i) on trees (no two walks to a given node share an edge) and (ii) approxi-

mately on sparse graphs or when ¢ is small, cases in which multiple successful walks are

DCi(Aq)
(R-1)

proxy measure of popularity, and one can view the ;s in our model as a reduced-form

unlikely. We may therefore use the normalized diffusion centrality 7,(A4, ¢) = as a

representation of the 7;(A, ¢)’s in an explicitly modeled network.
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