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• Start with an exogenous signal about an unknown state.

• Agents learn something about the state and then act ⇒ agents’ actions create data.

• Agents either learn by experimenting (doing “independent research”).

• OR by asking an information aggregator for a recommendation on how to act.

• Long-lived Information aggregator wants to learn the state: samples the data.

• BUT, if agents act on the aggregator’s recommendation, then the data generated by these 
actions are uninformative to the aggregator!
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Model

• There is a binary state of the world θ ∈ {θ0, θ1} .

• Time is discrete and indexed by t ∈ {0,1,2} .

• In each period there is a unit mass of short lived agents it ∈ [0,1] .

• Agent  at time  chooses a binary action i t ait ∈ {0,1} .

• Agents have a common prior μ ≡ ℙ(θ = θ0) ∈ (0,1) .

• Payoffs are  if the action matches the state, and  otherwise.1 0
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• The initial population each draw an informative signal (a recommendation ) 
summarized by:

a ∈ {0,1}

 π ≡ ℙ(a = 1 ∣ θ1) = ℙ(a = 0 ∣ θ0) >
1
2

.

• Each member of the initial population chooses an action given the recommendation, and 
these actions form the initial database. 

• Assume priors are moderate enough that agents follow the recommendation they receive. 
This also ensures they will follow the information aggregator’s recommendations.



t = 0



t = 0



t = 0



t = 0 t = 1



Timing: t = 1
Model



Timing: t = 1
Model

• A long-lived information aggregator is born. (We will return to the aggregator’s utility function!)



Timing: t = 1
Model

• A long-lived information aggregator is born. (We will return to the aggregator’s utility function!)

• Takes a sample of  draws from the database.k ≥ 1



Timing: t = 1
Model

• A long-lived information aggregator is born. (We will return to the aggregator’s utility function!)

• Takes a sample of  draws from the database.k ≥ 1

• Chooses whether or not it will offer a recommendation to agents.



Timing: t = 1
Model

• A long-lived information aggregator is born. (We will return to the aggregator’s utility function!)

• Takes a sample of  draws from the database.k ≥ 1

• Chooses whether or not it will offer a recommendation to agents.

• A new population of short-lived agents are born.



Timing: t = 1
Model

• A long-lived information aggregator is born. (We will return to the aggregator’s utility function!)

• Takes a sample of  draws from the database.k ≥ 1

• Chooses whether or not it will offer a recommendation to agents.

• A new population of short-lived agents are born.

• (Exogenous) proportion  ask the aggregator for a recommendation if one is available.q



Timing: t = 1
Model

• A long-lived information aggregator is born. (We will return to the aggregator’s utility function!)

• Takes a sample of  draws from the database.k ≥ 1

• Chooses whether or not it will offer a recommendation to agents.

• A new population of short-lived agents are born.

• (Exogenous) proportion  ask the aggregator for a recommendation if one is available.q

• Proportion  take a single draw from the initial database.1 − q



Timing: t = 1
Model

• A long-lived information aggregator is born. (We will return to the aggregator’s utility function!)

• Takes a sample of  draws from the database.k ≥ 1

• Chooses whether or not it will offer a recommendation to agents.

• A new population of short-lived agents are born.

• (Exogenous) proportion  ask the aggregator for a recommendation if one is available.q

• Proportion  take a single draw from the initial database.1 − q

• Agents act and actions are added to the database to create the interim database.
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• Aggregator takes a sample of  draws from the interim database.k ≥ 1

• Chooses whether it will offer a recommendation.

• A new population of short-lived agents are born.

• Proportion  ask the aggregator for a recommendation.q

• Proportion  take a single draw from the interim database.1 − q

• Agents act and actions are added to the database to create the posterior database.
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Half the data are 
uninformative!
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Analysis

• There are two kinds of learning we might be interested in.

• 1. The mass of agents playing the correct action at  and  (agent learning).t = 1 t = 2

• 2. The distribution over posteriors for the information aggregator (aggregator learning).

• Once we understand these two things, we will characterize the optimal recommendation 
policy for the aggregator (i.e. how often should recommendations be made?).

• The answer will depend on which of these types of learning the aggregator cares about.
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• Without loss of generality, I will assume throughout that θ = θ0 .

• By an appropriate law of large numbers, the initial database contains a fraction  of “correct” 
signals, and  “incorrect” signals.

π
1 − π

• What will the interim database look like? (i.e. at the end of )t = 1

π 1 − π0 1
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• Let  be a random variable equal to the proportion of agents who choose the correct 
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X1
t = 1. 0,

𝔼[X1 ∣ a1, …, ak] = π(1 − q) + qℙ(θ = θ0 ∣ a1, …, ak) = π + q( ̂πk − π) .

•  captures agent learning in X1 t = 1.
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Lemma 1 (Aggregator improves agent learning whenever ) 

Recommending  strictly increases the expected proportion  of agents taking the 

correct action at  iff the aggregator is sufficiently confident about the state 

̂πk > π

a = 0 (X1)
t = 1 ( ̂πk > π) .

• We can also think about agent learning from an ex-ante perspective before knowing ̂πk .



Agent learning ex-ante at  t = 1
Analysis

Corollary 1 (Aggregator improves agent learning in expectation iff ) 

The aggregator improves agent learning in expectation iff it has strictly better information 
than agents  Moreover, agent learning is strictly increasing in 

k > 1

(k > 1) . q .
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• Recall that if the aggregator makes a recommendation, the interim database looks like:

• Or reorganising,

• Squishing it down to a unit mass,
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 π(1 + 1 − q) (1 − π)(1 + 1 − q) q
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• With probably  the training data drawn from the interim database at  is 

uninformative. With probability  it is exactly as informative as the original signal. 

• ⇒ The period  database is strictly less informative than the initial database.

q
2 , t = 2

1− q
2

2

Lemma 2 (Aggregator worsens its own learning) 

The informativeness of the interim  database is strictly decreasing in  (in the 
sense of the Blackwell order). 

(t = 2) q
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Analysis: Optimal Recommendation Policy

• Proposition 1: In expectation, the aggregator increases the  mass of agents playing 
the correct action.

t = 1

• Proposition 2: BUT, it does so at the expense of a less informative  database.t = 2

• Recall the two types of learning: agent / aggregator. Consider two extremes.

• Aggregator cares only about agent learning.

• Aggregator cares only about aggregator learning.
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Long-term learning

Analysis: Optimal Recommendation Policy

• We’re going to focus on the case where the aggregator decides in each period whether or 
not to make a recommendation (holding  fixed).q

• Think of this as choosing whether to release ChatGPT 4.5 or whether to publish a paper.

• If the aggregator cares only about long-term learning then the optimal recommendation 
policy is simple:

• By Proposition 2, it will never make any recommendations.



Aggregator’s Decision Problem

Analysis: Optimal Recommendation Policy



Aggregator’s Decision Problem

Analysis: Optimal Recommendation Policy

• Suppose the aggregator derives utility from the proportion of agents in each period who 
choose the correct strategy.



Aggregator’s Decision Problem

Analysis: Optimal Recommendation Policy

• Suppose the aggregator derives utility from the proportion of agents in each period who 
choose the correct strategy.

• Let  denote the (random) proportion of agents who choose the correct strategy 

at 

Xi, i = 1,2
t = 1,2.



Aggregator’s Decision Problem

Analysis: Optimal Recommendation Policy

• Suppose the aggregator derives utility from the proportion of agents in each period who 
choose the correct strategy.

• Let  denote the (random) proportion of agents who choose the correct strategy 

at 

Xi, i = 1,2
t = 1,2.

• To fix ideas, let’s take



Aggregator’s Decision Problem

Analysis: Optimal Recommendation Policy

• Suppose the aggregator derives utility from the proportion of agents in each period who 
choose the correct strategy.

• Let  denote the (random) proportion of agents who choose the correct strategy 

at 

Xi, i = 1,2
t = 1,2.

• To fix ideas, let’s take

u1(X1, X2) = X1 + X2, u2(X2) = X2 .



Aggregator’s Decision Problem

Analysis: Optimal Recommendation Policy

• Suppose the aggregator derives utility from the proportion of agents in each period who 
choose the correct strategy.

• Let  denote the (random) proportion of agents who choose the correct strategy 

at 

Xi, i = 1,2
t = 1,2.

• To fix ideas, let’s take

u1(X1, X2) = X1 + X2, u2(X2) = X2 .

• Start by characterizing the optimal strategy at  t = 2.
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Optimal Recommendation Rule

Analysis: Optimal Recommendation Policy

• At  aggregator faces no consequence for garbling the database. t = 2,

• Let  be the  posterior belief that the state is  (the analogue of ).π̃k t = 2 θ0 ̂πk

• Write  for the aggregator’s recommendation at  and  at ̂a t = 1, ã t = 2.
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Analysis: Optimal Recommendation Policy

• At  aggregator faces no consequence for garbling the database. t = 2,

• Let  be the  posterior belief that the state is  (the analogue of ).π̃k t = 2 θ0 ̂πk

• Write  for the aggregator’s recommendation at  and  at ̂a t = 1, ã t = 2.

• The choice of whether or not to recommendation in  depends on which recommendation 
was made at  

t = 2
t = 1.

• It turns out that the aggregator is more willing to recommend at  if it thinks it made a 
mistake at 

t = 2
t = 1.
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Proposition 3 (Lower the bar for corrections) 

Suppose then 

1. If  then the aggregator recommends  when  and recommends  
nothing otherwise. 

2. If  or no recommendation was made at , then the aggregator optimally 
recommends  when  and recommends nothing otherwise. 

Where   

π̃k ≥ 1
2 ,

̂a = 1, ã = 0 π̃k ≥ π*

̂a = 0 t = 1
ã = 0 π̃k ≥ π

π* =
2π + q(1 − π)

2 + q
∈ ( 1

2 , π) .
NOTE:  is decreasing in π* q .
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• Now consider  and suppose t = 1 ̂πk ≥ 1
2 .

• The information aggregator maximises: 𝔼[X1 + X2 ∣ a1, …, ak] .

• We’ve already seen that

𝔼[X1 ∣ a1, …, ak] = π + q( ̂πk − π),

• It turns out that if the aggregator is willing to recommend in  then this improves 
outcomes (in expectation) in 

t = 1,
t = 2!
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Analysis: Optimal Recommendation Policy

• Intuition: Suppose q = 1.

1. Your best guess of the recommendation you’ll make tomorrow is the recommendation 
you made today.

2. If making a recommendation today improves outcomes today, then you expect (a) to 
make the same recommendation tomorrow (that’s just 1.) and (b) that the same 
recommendation tomorrow will improve outcomes tomorrow.

3. So if it pays to make the recommendation today, it always pays (in expectation) for 
tomorrow!
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Proposition 4 (Optimal Recommendation in ) 

1. If  then the aggregator recommends  

2. If  then the aggregator makes no recommendation. 

3. If  then the aggregator recommends  

t = 1

̂πk ≥ π a = 0.

1 − π < ̂πk < π

̂πk ≤ 1 − π a = 1.

NOTE: this opens up the possibility that a large number of agents take the wrong action in 
both periods (recommendations increase the variance of ).X1, X2
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Summary

Analysis: Optimal Recommendation Policy

• If the aggregator cares only about aggregator learning, it never makes recommendations.

• If the aggregator cares only about agent learning, it makes recommendation whenever they 
improve short-term outcomes.

• What if the aggregator cares about a mix of these things?

• Intuitively: Pushes the threshold  at which the aggregator is willing to recommend 
upwards.

̂πk
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• Optimal policy depends on which kind of learning we care about. 

• Likely from a social perspective the answer is a mix of agent and aggregator.

• Policies which improve agent learning in expectation can also lead to a large number of 
agents taking the wrong action.

• We should be cautious about how feedback can amplify mistakes (and be quick to correct 
those mistakes, or at the very least stop making recommendations until we learn more).

• Policies which help screen data for “traces of feedback” can help improve learning.

Where does this leave us?
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 Extensions

• What are the limit points of learning with feedback loops? (Difficult: not i.i.d.)

• In my model, a Bayesian aggregator still learns as t → ∞ .

• A naive aggregator who neglects the feedback loop does not necessarily learn. 
(*important)

• Speed of learning?

• Multiple aggregators? Biased aggregators? Competing aggregators?

• Changing state? Endogenizing ?q
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Limitations

• Would like to move beyond binary state binary action but not yet sure how far I can take the 
model.

• The “pollution” of data relies on there being no “new” data generated. If polluted data makes it 
more likely that agents somehow correct the polluted data, then this reduces (possibly 
eliminates) the key tradeoff in my model.

• The case where agents draw more than one signal can be construed as “adding in new data”. 

• In reality agents’ samples are probably correlated, but we have to start somewhere.

• If prevalence of old data decays faster than  then things change.1
n
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Conclusion

• I develop a model of learning that incorporates feedback loops.

• I show that feedback improves agent learning but worsens aggregator learning.

• The optimal recommendation rule for a strategic information aggregator depends on which of these 
two types of learning it values.

• Value on aggregator learning ⇒ don’t make recommendations!

• Value on agent learning ⇒ make recommendations when confident enough about the state.

• Weaker confidence required to correct mistakes at t = 2.

• Introduces the possibility of making more mistakes than in the absence of the aggregator.


